
www.manaraa.com

Flexible and Robust Data Storage and Retrieval inthe Haysta
k SystembyKenneth D. M
Cra
kenSubmitted to the Department of Ele
tri
al Engineering and ComputerS
ien
ein partial ful�llment of the requirements for the degree ofMaster of Engineering in Ele
tri
al Engineering and Computer S
ien
eat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYSeptember 2001

 Massa
husetts Institute of Te
hnology, MMI. All rights reserved.
Author .Department of Ele
tri
al Engineering and Computer S
ien
eJune 11, 2001Certi�ed by. .David KargerAsso
iate ProfessorThesis SupervisorCerti�ed by. .Lynn Andrea SteinAsso
iate ProfessorThesis SupervisorA

epted by .Arthur C. SmithChairman, Department Committee on Graduate Students

www.manaraa.com

2

www.manaraa.com

Flexible and Robust Data Storage and Retrieval in theHaysta
k SystembyKenneth D. M
Cra
kenSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon June 11, 2001, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Ele
tri
al Engineering and Computer S
ien
eAbstra
tIn this thesis we
reate a new ba
kend to the Haysta
k information retrieval proje
t.We
all this
exible and robust module the triple store.Haysta
k brings the power of personalized sear
h into the hands of the user. It
urrently uses another data storage ba
kend, but will eventually use the triple storeinstead. Several problems were fa
ed while designing the new module. Many weredue to the in
exibility of existing Haysta
k modules. We have
reated a new Haysta
kTrust Model that makes some lega
y Haysta
k
ode more
exible.The interfa
e to the triple store allows data and metadata to be saved as labelled,dire
ted binary relations. We hope that the interfa
e is
exible enough to eventuallysave the Haysta
k Data Model, and robust enough to eventually make Haysta
kmore dependable. The JDBCStore implementation of the interfa
e
onne
ts to aninter
hangeable third-party database. It manages the more
ompli
ated robustness
apabilities provided by the third-party database rather than handling robustnessfrom s
rat
h. On
e Haysta
k swit
hes to the JDBCStore ba
kend, we will have amore dependable IR tool on whi
h to develop other interesting resear
h.Thesis Supervisor: David KargerTitle: Asso
iate ProfessorThesis Supervisor: Lynn Andrea SteinTitle: Asso
iate Professor
3

www.manaraa.com

4

www.manaraa.com

A
knowledgmentsI would like to thank my thesis advisors, David Karger and Lynn Stein, for exposingme to the intriguing te
hnologies related to the Haysta
k proje
t. I would also liketo thank my family, Dad, Mom, S
ott and Ali, for helping me meet the
hallengesof MIT over the last several years. I would also like to a
knowledge the people whobrought me sanity and good times in the midst of all the pressure, in
luding but
ertainly not limited to the East Cambridge gang and the MIT swim team. Andthanks to Joel Rosenberg for taking the time to help me with my writing.

5

www.manaraa.com

6

www.manaraa.com

Contents
1 Introdu
tion 131.1 The Problem . 141.2 Overview . 172 Ba
kground 192.1 The State of Sear
h . 192.1.1 A Bird's Eye View of Information Retrieval 202.1.2 Catering to the User . 212.1.3 Context-Aware Sear
h . 222.2 Using Transa
tions to A
hieve Robustness 232.2.1 The ACID Properties . 232.2.2 Enfor
ing Isolation While Using Transa
tions 252.2.3 JDBC: A Transa
tional API 292.3 Getting Haysta
k to Understand . 342.3.1 An Introdu
tion to RDF . 352.3.2 RDF Basi
s . 362.3.3 An RDF Example . 372.3.4 Adding S
ope to RDF Resour
es 392.3.5 The RDF Type Hierar
hy . 413 The Haysta
k Personalized IR Tool 433.1 What Haysta
k Does . 443.2 Haysta
k Goals . 447

www.manaraa.com

3.3 Haysta
k: The User Perspe
tive . 453.4 The Haysta
k Data Model . 463.4.1 Straws . 463.4.2 Ties . 473.4.3 Needles . 473.4.4 Bales . 483.4.5 Navigating the Model . 493.5 The Haysta
k Servi
e Model . 493.5.1 HsServi
e . 513.5.2 Core Servi
es . 513.5.3 Data Model Servi
es . 553.5.4 The Communi
ations Module 553.6 Persistent Storage: The Old Way . 594 The Haysta
k Trust Model 614.1 A New Distin
tion: Utilities vs. Servi
es 624.2 Haysta
k Without a Root Server? . 634.2.1 The Con�g Utility is Essential (sort of) 664.2.2 Other Essential Utilities . 664.3 A Per-Module Namespa
e Utility . 664.3.1 A Namespa
e Example . 674.3.2 Who Controls a Namespa
e? 674.3.3 The Namespa
e De�nes a Web of Trust 684.3.4 Dynami
 In
lusion in a Namespa
e 704.3.5 Cleaning Up a Namespa
e . 704.3.6 When is a New Namespa
e Ne
essary? 704.4 A More Modular Haysta
k . 714.5 Adding A New Module . 725 The TripleStore Interfa
e 755.1 The Transa
tion Contra
t . 768

www.manaraa.com

5.2 A Flexible Graph for Haysta
k . 785.3 The TripleStore Interfa
e . 795.4 A Better Understanding Through RDF Triple Stores 815.4.1 A Uniform API for Storing RDF Models 815.4.2 Rei�ed Statements . 835.5 Using the TripleStore . 835.5.1 Dire
tly Through Java . 835.5.2 Remotely via Middlemen . 846 Implementating the TripleStore 856.1 Preparing the JDBCStore Module for Use 866.2 How Transa
tions Work . 876.3 How URIs Work . 896.4 The Database Tables . 906.4.1 Storing Literals . 916.4.2 The RDF Assertions . 936.5 A Sample Put . 936.6 A Sample Get . 946.7 How The Server or Client Shuts Down 957 Future Investigation 977.1 Use An Alternative Way to Store Serializable Obje
ts 977.2 Close the Namespa
e Properly . 987.3 Add A Lo
al Triple Store Command Line 987.4 Add JDBCStore Ca
hes . 987.5 Fix Broken Conne
tions . 997.6 Prevent Hanging Conne
tions . 997.7 Find Out What An Ex
eption on Commit and Abort Means 997.8 Dis
over if Information Sent Along the Wire Via JDBC Conne
tionsis En
rypted . 999

www.manaraa.com

7.9 Ensure That the JDBCStore Can Run onDi�erent Ba
kends . 1007.10 Find Out Why the PostreSQL DriverDoesn't Appear to Change Transa
tionIsolation Levels . 1007.11 Improve Modularity . 1017.12 Make Haysta
k Use the Triple Store 1017.13 Haysta
ks Sharing Information . 1018 Con
lusions 103A RDF Formal Grammar 105B RDF S
hema 109C Glossary of Haysta
k Terminology 115

10

www.manaraa.com

List of Figures
2-1 The depositpay and paybill pro
edures 252-2 The a
tions of the depositpay transa
tion 262-3 Sequen
e of parallel a
tions violating the isolation
onstraint 272-4 Lo
king in the depositpay-isolated and paybill-isolated transa
tions . . 272-5 A Sample SQL Table . 302-6 A Simple RDF Model . 372-7 An RDF Model for a Rei�ed Statement 382-8 An RDF Model for a Statement About a Statement 392-9 An RDF Model With Namespa
es Identi�ed 402-10 The Prin
ipal Resour
es of the RDF Type Hierar
hy 423-1 Similarities between the HDM and RDF 463-2 The HDM for \
owers have petals." 503-3 Servi
es Communi
ate via Semanti
 Des
riptions 543-4 A User Requests Ar
hiving of the URL \http://web.mit.edu/". 584-1 The Relationship Between Servi
es and Utilities 624-2 The New Haysta
k Model . 644-3 A Sample Module Controls its Namespa
e 694-4 The Namespa
e View of the World 715-1 The Triple Store Abstra
t Method List 796-1 The JDBCStore Database Table Stru
ture 9211

www.manaraa.com

B-1 An XML Serialization of the RDF S
hema 1.0 109

12

www.manaraa.com

Chapter 1
Introdu
tion
Haysta
k is an information retrieval engine designed to help users sear
h their digitalinformation spa
e. This thesis
reates a new data storage layer for Haysta
k that we
all the triple store1. The triple store provides a uniform way for
lients to store
exibleinformation. We
all the module in Haysta
k whose spe
i�
 task it is to enhan
e auser's sear
h
apabilities the root server. The root server will be
ome the prin
ipal
lient of the triple store.One thing
omputers are good at is storing large amounts of data. However,
onventional software does only a medio
re job of helping users sear
h that data. Ashardware improves while
osts drop, the volume of digital information available tousers in
reases dramati
ally. Unfortunately the more information there is the harderit is to sear
h through it. Haysta
k provides a personalized tool that helps usersnavigate their
orpus of information. It does so by
olle
ting information about theuser's
ontext before a sear
h is
ondu
ted.The triple store provides a physi
al representation of data that survives shutdownso that its
lient may safely return to a useful state. This thesis provides a uniformway for
lients to write down their state. At the same time it provides a way toprote
t this storage from its
lients by restri
ting a

ess to a small set of tasks.1We use this style of text when referring to Haysta
k-spe
i�
 modules and other design entitiesthroughout the body of this paper. 13

www.manaraa.com

1.1 The ProblemThe goal of the Haysta
k proje
t is to provide an information retrieval tool that putsthe power of sear
hing in the hands of the user. The power of a Haysta
k sear
h ismeasured in terms of its ease of use and its ability to point out data relevant to the
ontext of a query.It should be relatively easy to write Haysta
k data in the triple store. A lot ofHaysta
k data is metadata. Metadata is data about data. In Haysta
k it may take theform of an author of a parti
ular do
ument or a user's annotations on that do
ument.Haysta
k metadata is often expressed as relations that
onne
t data together with alabelled link.The triple store was designed with Haysta
k, its primary
lient, in mind. A re-quirement of the triple store is that it provide the ability to transfer Haysta
k datainto it without breaking any of the system. Complying with lega
y
ode proved tobe quite a
hallenge indeed.The basi
 data stru
ture in the triple store is an ordered triple. In terms ofHaysta
k metadata, ea
h triple
ontains a pointer to the sour
e and sink togetherwith the string label of a relation. The triple store also allows storage and retrievalof a set of bits, su
h as a do
ument's body. The meaning of do
ument text storedin Haysta
k is in its relationship to other data, or, using triple store terminology, themeaning is lo
ated in the triples about the bits. Metadata
an be atta
hed to thedata stored in the triple store just as the author of a do
ument
an be atta
hed to ado
ument in Haysta
k.Design and implementation of the triple store fo
uses on several goals. A triplestore has been developed that� adheres to many general Haysta
k design prin
iples.�
an
oexist with Haysta
k without breaking any part of it.� maintains a web of trust that helps dynami
ally loadable internal pro
esses
ommuni
ate while prote
ting them from external harm.14

www.manaraa.com

� allows multiple
opies of itself and other modules to run
on
urrently.� provides a
exible storage layer for Haysta
k data.� provides a robust interfa
e on whi
h a
orre
tly designed Haysta
k
an dependfor information storage.� provides a stepping stone for Haysta
ks to begin
ommuni
ating with ea
h other.By a
hieving these goals the triple store has been added to the repertoire of usefulmodules in the Haysta
k proje
t. A fortuitous side e�e
t is that the triple store maybe used by
lients other than Haysta
k's root server. Another benevolent side e�e
t isthat there is now a way to introdu
e new modules in Haysta
k and to modify existingrigid
ode to be
ome
exible and reusable.The triple store implementation
onne
ts to a third-party database that is not partof the Haysta
k proje
t. We do not want to require that Haysta
k users
onne
t toany parti
ular database in order to run Haysta
k. Haysta
k
ode is written primarilyin the Java language [33℄. The triple store uses a Java pa
kage
alled JDBC [25, 29℄that allows standardized statements to be exe
uted on a large number of di�erentdatabase ba
kends, maintaining Haysta
k's ability to run on many platforms. Wealso want to minimize the overhead of setting up the triple store to use this database.After a user
an log in to his or her database, he or she simply
on�gures the triplestore with a JDBC driver name and a pointer to the database.Haysta
k
ontained a lot of useful fun
tionality prior the
reation of the triplestore. In order to preserve this fun
tionality, the triple store does not break lega
yHaysta
k
ode. Rigidity of existing design made adding a new low layer very diÆ
ultin some
ases.Several small pro
esses
alled servi
es run within Haysta
k to help improve infor-mation storage and retrieval. We want these servi
es to be dynami
ally loadable andunloadable as they are needed. As servi
es evolve, we want to restri
t their ability todamage other servi
es and parts of the Haysta
k Data Model. We introdu
e a utilityas a generalization of the servi
e idea. Utilities have the same dynami
 properties of15

www.manaraa.com

servi
es but aren't part of the Haysta
k root server module. Utilities may be part ofany module in Haysta
k. We introdu
e the Haysta
k Trust Model that utilities
anuse for
ommuni
ation with trusted utilities and for prote
tion from untrusted utilities.This trust model is somewhat similar to the trust model used for servi
es. Nothingexpli
itly prevents servi
es from adopting the Haysta
k Trust Model in the future.One negative side e�e
t of the Haysta
k Servi
e Model is the requirement foruniqueness of servi
es running inside Haysta
k. The triple store uses some servi
es thatwere on
e restri
ted by uniqueness, su
h as those in the Haysta
k
ommuni
ationsmodule. These servi
es performed tasks that are useful to modules other than theroot server. We have relaxed their relian
e on a root server and renamed them asutilities. If a utility registers in a module's trust area it is restri
ted by uniquenesswithin that trust area only. Sin
e we permit
reation of multiple trust areas, we
anhave multiple
opies of utilities that work within di�erent modules
on
urrently.The root server will be
ome a large-s
ale
lient of the triple store. The root serverstores most of its information a

ording to the Haysta
k Data Model. The triple storewas designed to permit physi
al storage of that model. It is
exible enough to storethe many di�erent types of Haysta
k data and metadata. The triple store's
exibility
omes in part from the uniform way all information is stored. A
lient
an write downunpro
essed data as well as pro
essable metadata des
riptions.The root server will use the triple store to give its data a more permanent existen
e.We want Haysta
k to be able to remember all of the things a user has pla
ed intohis or her Haysta
k, as well as all it has learned about the user. In the event of anunexpe
ted failure, we want Haysta
k to be able to return to a re
ent useful state. Thetriple store provides the ability for a multithreaded
lient like the root server to prote
tits internal data. To do this the triple store supports transa
tions that
an be used toseparate one series of a
tions from another. Just like we need to prote
t servi
es fromdamaging ea
h other, we also need to prote
t threads from damaging physi
al datashared with other threads. The triple store provides transa
tions that a multithreaded
lient
an use to maintain a meaningful state during exe
ution, shutdown, and failure.It remains the responsibility of the
lient to use these transa
tions
orre
tly.16

www.manaraa.com

The triple store's uniform methods will help make its data more portable. Al-though personal Haysta
ks
urrently
an not
ollaborate with ea
h other, we expe
tto add this feature in the future. To use the triple store, Haysta
ks must express allmeaningful data using the uniform data stru
tures of triples and unpro
essed bits.It seems natural that in the future two Haysta
ks
ould transfer knowledge usingversions of the same des
riptive methods they used to write their triples and bits inthe �rst pla
e.1.2 OverviewThis thesis dis
usses how the design goals of the previous se
tion were a
hieved. Wetry to identify weaknesses of our solution whenever possible. We also present thealternatives
onsidered where appropriate. We hope that the
hanges made throughthis thesis will help Haysta
k be
ome a more dependable, and therefore more useful,sear
h tool.The next
hapter des
ribes some of the
urrent resear
h te
hnologies that Haysta
kand, more spe
i�
ally, the triple store use. We then des
ribe in Chapter 3 the detailsof the Haysta
k proje
t with a fo
us on how the root server uses the Haysta
k DataModel and the Haysta
k Servi
e Model to represent and manipulate its data. TheHaysta
k Data Model is important in understanding the kinds of data the triple storeshould store. The Haysta
k Servi
e Model made implementing the triple store diÆ
ult.One of the requirements of a triple store is to allow multiple instan
es of its serverto
oexist with the root server. We may want to use these triple store instan
es forfuture
ontent versioning support. It was impossible to allow multiple
on
urrenttriple stores and to reuse Haysta
k
ode written under the Haysta
k Servi
e Modelat the same time. The Haysta
k Trust Model, a solution to this problem, supportsdynami
 loading of multiple instan
es of modules, as presented in Chapter 4. Themost important improvement is that Haysta
k
ode developed a

ording to this newmodel
an a
tually be reused elsewhere in the system, unlike Haysta
k servi
e
ode.The triple store adopts this model to establish a web of trust for its utilities. The17

www.manaraa.com

TripleStore2 interfa
e is des
ribed in detail in Chapter 5. This interfa
e de�nes theways that
lients
an use the triple store. Transa
tions are very important to properuse of the triple store. A transa
tion
ontra
t des
ribing the way in whi
h transa
tionsshould be used is in
luded with the interfa
e. We next des
ribe how the JDBCStoreimplementation of Chapter 6 performs the TripleStore methods. The JDBCStoreknows how to
onne
t to a database using a JDBC driver and how to translatethe TripleStore methods to this driver. The implementation of the transa
tion
ontra
t is very important in ensuring that the triple store behaves
orre
tly. Chapter7 presents some relevant future resear
h dire
tions that
ould improve the triple storeand the rest of the Haysta
k proje
t. We
on
lude with some of the lessons learnedfrom this thesis. Some lessons involve dealing with the diÆ
ulty of taking an idea anddesigning it to work with an existing system. We also have an improved understandingof Haysta
k.

2We use this style of text when referring to a
tual Haysta
k
ode throughout the body of thispaper. Sin
e Haysta
k
ode is Java
ode, we try to follow Java
onventions in naming pa
kages,interfa
es,
lasses, variables, and methods. Pa
kages use only lower
ase letters in their names.Usually interfa
es and
lasses have only the �rst letter of every word in their name
apitalized.Variables and methods tend to
apitalize only the �rst letter of words following the �rst word.18

www.manaraa.com

Chapter 2
Ba
kground
Before we get into the spe
i�
s of the Haysta
k proje
t, we �rst address some relatedte
hnologies. Haysta
k attempts to improve the sear
h te
hnologies available todayby running a variety of servi
es whi
h aid in information storage and retrieval. Thenew triple store layer is a pla
e to store Haysta
k data
onsistently and persistentlyusing transa
tions. This new module also permits storage of
exible data from a stan-dard des
riptive modelling framework. This
hapter presents some of the ba
kgroundhelpful in understanding Haysta
k and the triple store.A
ertain level of familiarity with mathemati
s and
omputer engineering
on
eptsis expe
ted of the reader. Some te
hnologies su
h as graph theory, set theory,
lient-server ar
hite
ture, and obje
t-oriented programming design are out of the s
ope ofthis thesis. The author has attempted to avoid requiring knowledge spe
i�
 to theJava programming language wherever possible. However, there are pla
es that referto Java be
ause design de
isions made use of Java-spe
i�

apabilities. If the reader isunfamiliar with Java it may be bene�
ial to
onsult a tutorial [33℄ or a more
ompletereferen
e guide [9℄.2.1 The State of Sear
hAs the amount of available digital information grows, the problem of sear
hing forrelevant and useful resour
es be
omes more and more diÆ
ult. Haysta
k provides a19

www.manaraa.com

personalized way for users to organize the
orpus of information available to them.As
omputer users turn more and more towards remote information repositories, thealready diÆ
ult task of manually organizing one's personal information spa
e be
omesunmanageable. All these systems be
ome more useful if we
an lo
ate the right onesand retrieve and understand useful data from them.Sear
hing information was relatively painless when the Internet was
omprisedof individual personal
omputers [20℄. These
omputers usually had a somewhatless permanent
onne
tion to the network. Communi
ation often involved
onta
tingma
hines point-to-point and following the links ea
h provided. Files
ould be retrievedon
e a host was found via transfer proto
ols su
h as ftp [18℄.We would like a tool that
an sear
h our own ma
hines and the network to exposethe information available. Common sear
h tools don't a
hieve this goal be
ause theydo not understand their users [20℄. They do not understand natural language ques-tions. They
an't
orre
t mispellings. Users are often for
ed to live with the same
anned results that everyone gets for a parti
ular sear
h. Sear
h engines o�er little
ustomization. The Haysta
k proje
t uses an alternative approa
h to sear
hing. Itwill o�er
ontext aware sear
hing of lo
al Haysta
ks,
ommunities of Haysta
ks, andarbitrary resour
es available on the network. Haysta
k pays spe
ial attention to thedynami
 and often transitory nature of information resour
es.This se
tion develops the
urrent state of sear
h. We anti
ipate the addition ofnew servi
es that enhan
e Haysta
k by performing tasks similar to the
ontemporaryresear
h. We must prote
t the triple store from servi
es
urrently in Haysta
k andthose we anti
ipate in the future.2.1.1 A Bird's Eye View of Information RetrievalInformation retrieval (IR) is most well developed in the domain of text retrieval.Text retrieval
an be used to sear
h through a large
orpus of do
uments. Infor-mation retrieval tools for other types of information resour
es are less well explored.Several available text retrieval te
hniques
an be applied to the task of retrievingother data types [19℄. As more multimedia resour
es in di�erent formats be
ome20

www.manaraa.com

available, perhaps more sear
h te
hnology in these domains will emerge. Currentlye�orts fo
us on text or other metadata that
an be used to des
ribe resour
es forwhi
h we have no means of sear
hing their a
tual
ontent.The IR
ommunity
ommonly measures the e�e
tiveness of information retrievalin two dimensions
alled pre
ision and re
all [24℄. Pre
ision measures how relevantretrieved resour
es are to queries. Re
all measures how many of the relevant resour
esavailable a
tually appear in the results of a query. Typi
ally an information retrievalsystem has to settle for some balan
e between the two. It is diÆ
ult to retrieve onlyrelevant resour
es without missing something important. It is also diÆ
ult to retrieveall relevant resour
es without also retrieving some irrelevant ones.A
tive areas of Haysta
k resear
h study di�erent IR models that attempt to im-prove both pre
ision and re
all [34℄. Whatever the ultimate IR solution, Haysta
kwill want to pre
ompute representations of do
uments for query result pro
essing.The pre
omputed data stru
tures will be stored in the triple store as metadata aboutea
h do
ument.2.1.2 Catering to the UserAny sear
h engine is useless if it doesn't �nd relevant information for the user easily.In
remental steps have been taken towards developing a more useful sear
h engine.Improvements fo
us on in
reasing the a

ura
y of sear
hes while redu
ing the useroverhead.One stepping stone toward better sear
h is in
luding verti
al sear
h tools. Averti
al sear
h tool is spe
ialized to ful�ll a parti
ular type of sear
h. Suppose I wantto �nd a sto
k quote. Many sear
h engines
ontain a link to a spe
ial sear
h formfor �nan
ial users. The tool itself may exe
ute a query a
ross a di�erent subset ofdatabases. Many general sear
h engines o�er versions of verti
al sear
h tools [31℄.The data-
entri
 approa
h also o�ers some favorable improvements to sear
h.Similar to verti
al sear
h, data-
entri
 sear
h has spe
ial databases
onstru
ted asauthorities on a parti
ular topi
 area. When a user types a query asking about showsplaying at the Boston Symphony Or
hestra, the entertainment database is
onta
ted.21

www.manaraa.com

The argument in favor of the data-
entri
 approa
h says that while anyone publishingsomething on the Web
ould use metadata, they won't. Metadata
ould be used topla
e the data in the right subje
t area automati
ally. One
annot assume thatmetadata will be written, as it adds a lot of user overhead to Internet publishing[35℄. Weaknesses of the data-
entri
 approa
h in
lude their in
exible stru
ture andthe overhead of
reating a new topi
 database.The task-
entered approa
h tries to shift sear
h results towards what the user istrying to do. It proposes that instead of using naiive
olle
tion-oriented solutionsthat sear
h tools would bene�t from knowing the user's task [17℄. If I am trying toresear
h information about Haysta
k, the
ommonpla
e assumption that I am tryingto buy something is not a

urate. I want to resear
h Haysta
k, not buy a bushel ofhay.The designs presented above all hint at trying to get more information about whatthe user a
tually wants in his or her sear
h results with minimal overhead. Wouldn'tit be great if a sear
h tool existed that
ould infer things about a query based on the
ontext in whi
h the user is asking his or her question?2.1.3 Context-Aware Sear
hHaysta
k takes sear
h one step further. Servi
es maintain
ontextual
lues to improvesear
h. One su
h servi
e allows users to annotate do
uments with
omments that willhelp them lo
ate that do
ument in the future. Future queries will sear
h a
ross the
omments as well as the do
uments themselves. We anti
ipate the
reation of newservi
es to maintain more
ontextual
lues. New servi
es may infer personal
ontextby either wat
hing what a user has done in the past or what he or she is doing rightnow.Suppose I frequently use my Haysta
k IR tool to ask questions about
omputers.If I then ask a query with the term \apple", Haysta
k
an use my past sear
hing
ontext as a
lue that I want information on a
ertain type of
omputer. What if Iam
urrently writing a do
ument on
ooking? Further
ontextual
lues may dire
tthe sear
h otherwise. Suppose I have a system like Watson [6℄, that derives
ontext22

www.manaraa.com

from the do
uments I am editing in my word pro
essor. It may provide sear
h resultsthat are spe
i�
 to a type of fruit. Suppose I am navigating through a result setthat
ombines a mix of
omputer and fruit resour
es, but am only interested in thoseabout fruits. Sear
hPad [4℄ helps the user navigate by allowing users to re�ne sear
hand mark relevant sear
h results. Improvements to Haysta
k that in
orporate similar
ontext awareness
ould dramati
ally improve the user experien
e.2.2 Using Transa
tions to A
hieve RobustnessAs an appli
ation that stores information, Haysta
k needs a robust physi
al represen-tation. On
e Haysta
k has adopted the triple store layer, the physi
al representationwill be used in the event of shutdown or failure to rebuild Haysta
k's appli
ationstate. We present a model in whi
h Haysta
k
an safely issue a series of
hanges andqueries to the triple store inside a single
oherent transa
tion. A transa
tion is \a
olle
tion of operations on the physi
al and abstra
t appli
ation state" [10℄.2.2.1 The ACID PropertiesTransa
tion management helps redu
e the general problem of maintaining persis-ten
e and
onsisten
y to the problem of adhering to ACID transa
tion propertiesof Atomi
ity, Consisten
y, Isolation, and Durability. The triple store
annot ensureACID-
omplian
e in the Haysta
k appli
ation that will eventually use it. It
an onlyprovide an ACID-
ompliant interfa
e to disk. The ACID properties will remain a
on
ern as Haysta
k migrates towards relian
e on the triple store.Atomi
ity means that the sequen
e of a
tions that
onstitute a transa
tion appearas though either all or none of them o

ur. Consisten
y means that a transa
tionmust perform a state transition su
h that if the original state was
onsistent with
on-straints before the transa
tion, the new state will also
onform to those
onstraints[10, 28℄. An appli
ation that begins in a
onsistent state will, by indu
tion on transa
-tions exe
uted on its state, always be
onsistent. Isolation means that while paralleltransa
tions may be exe
uted
on
urrently, none of the e�e
ts of their
omposite na-23

www.manaraa.com

ture will ever be visible [28℄. For any two transa
tions A and B1, the e�e
ts are thesame as if either all
omposite a
tions of A o

urred entirely before B or vi
e versa.Durability means that transa
tions that
omplete su

essfully survive failures [10℄.Persisten
e is a synonym for durability.We say that a transa
tion
ommits if it has renoun
ed its ability to abandonexe
ution [28℄, and will eventually exe
ute in its entirety. We say that a transa
tionaborts if it has de
ided that all
hanges it has made will be undone [28℄, so that it isas if the transa
tion never existed.An ACID-
ompliant transa
tion, hereafter referred to simply as a transa
tion,must be able to handle failures at any point. The term
ommit point refers to theinstru
tion step within a transa
tion where the de
ision to either
ommit or aborta transa
tion is made. Until the
ommit point has been rea
hed, our transa
tion isa pending transa
tion. Any instant in the exe
ution of a program may
onstitute apoint of failure.Consider the e�e
ts of a power outage on a PC. On
e a failure has o

urred, theonly way to rebuild the state of an appli
ation is from physi
al storage, here, a harddisk. The appli
ation must have the
apa
ity to re
over from the failure using onlythat physi
al data. After proper re
overy the appli
ation's abstra
t state will againbe
onsistent.Re
overy usually involves undoing any transa
tion that has not rea
hed its
ommitpoint. For the sake of argument let us assume that on re
overy we
are only about
ompleting those transa
tions that have been
ommitted, and would like to e�e
tivelyabort all aborted and pending transa
tions. The
ommitted transa
tions must be ableto run through to
ompletion. The aborted transa
tions and those transa
tions still intheir pre-
ommit phase must be
ompletely undone. For all points up to the
ommitpoint of a transa
tion, we must be able to undo all
hanges that have been made.On
e the de
ision has been made to
ommit, the transa
tion must be able to
omplete the a
tions required on all resour
es it e�e
ts. Transa
tions should request1We use this style of text when referring to example and abstra
t methods and variables through-out the body of this paper. 24

www.manaraa.com

depositpay: pro
edure(a

ount, amount);a

ount = a

ount + amount;return;paybill: pro
edure(a

ount, amount);a

ount = a

ount � amount;return;Figure 2-1: The depositpay and paybill pro
eduresthe ability to intera
t with these resour
es during the pre-
ommit phase [28℄. Ifwe wait until post-
ommit, we may not be able to a

ess a resour
e to perform anoperation that we are required to
omplete.There are several ACID issues with whi
h we must
ontend if we want to build alow-level interfa
e to disk. However, the triple store uses third-party software to bridgethe gap between memory and disk. Instead we fo
us on maintaining persisten
e and
onsisten
y in the appli
ation layer. Some issues with whi
h we are
on
erned in
ludeisolation and the transa
tion spe
i�
ations of a Java DataBase Conne
tivity APIknown as JDBC [25℄.2.2.2 Enfor
ing Isolation While Using Transa
tionsHaysta
k is a multithreaded appli
ation. Multithreaded appli
ations have the poten-tial for more than one transa
tion to run simultaneously. Re
all that transa
tionsrequire only that after ea
h transa
tion has
ommitted or aborted, the system is in a
onsistent state. If two threads want to perform operations independently on a par-ti
ular variable or address, lo
king may be required. The address
an be an addressin memory or on disk, depending on the
ontext of the variable. A lo
k is a markmade by one thread to prote
t the address from being read from or written to byanother thread [28℄.Consider the pseudo
ode in Figure 2-1 that de�nes the methods depositpay andpaybill, and give the
ode two
on
urrent transa
tions. Suppose the pseudo
ode fordepositpay des
ribes a transa
tion that is
omprised of several a
tions. First an en-25

www.manaraa.com

1.
reate the depositpay environment2. read a

ount3. read amount4.
ompute sum5. write a

ount (in the
ontaining environment)6.
lose the depositpay environmentFigure 2-2: The a
tions of the depositpay transa
tionvironment is
reated for the pro
edure. The data from the a

ount and amountarguments are read into the method's environment [1℄. The sum of the two variablesis
omputed. That sum is written to the address of a

ount in the
ontaining environ-ment. Finally the environment is
losed. The steps o

uring within the environmentare as in Figure 2-2. There is an obvious analagous expansion of the pseudo
ode forthe pro
edure paybill.Suppose
ompany X wants to deposit John's $800 pay
he
k in his a

ount, while
ompany Y wants to automati
ally withdraw John's ele
tri
 bill of $100. AssumeJohn's bank a

ount initially has $600 in it. Think of ea
h operation as a transa
tionon John's bank a

ount o

urring
on
urrently. If the transa
tions are isolated weexpe
t John to end up with a balan
e of $600+$800�$100=$1300. In the absen
e oflo
ks, these transa
tions are not guaranted to be isolated. There exists an orderingof their
omposite a
tions su
h that the e�e
t is not the same as if either all ofX o

urred before Y or vi
e versa. For example, the sequen
e of steps with theirasso
iated values in Figure 2-3 demonstates one su
h ordering. John will be verydisappointed to dis
over he has only $500 in his a

ount.With the use of lo
ks we
an ensure John will not be surprised the next time helooks at his a

ount statement. Consider the modi�ed pro
edures depositpay-isolatedand paybill-isolated in Figure 2-4 that make use of the spe
ial pro
edures lo
k andrelease. The lo
king proto
ol marks the address of its argument in the
ontainingenvironment su
h that no other environment may a

ess that address until the markis removed. A transa
tion attempting to lo
k an address that is already markedmust either wait for the lo
k to be released or perform some alternative
omputation.26

www.manaraa.com

A
tion Value1. read a

ountX 6002. read amountX 8003.
ompute sumX 14004. read a

ountY 6005. write a

ountX 14006. read amountY 1007.
ompute di�eren
eY 5008. write a

ountY 500Figure 2-3: Sequen
e of parallel a
tions violating the isolation
onstraint

depositpay-isolated: pro
edure(a

ount, amount);lo
k(a

ount);a

ount = a

ount + amount;release(a

ount);return;paybill-isolated: pro
edure(a

ount, amount);lo
k(a

ount);a

ount = a

ount � amount;release(a

ount);return;Figure 2-4: Lo
king in the depositpay-isolated and paybill-isolated transa
tions
27

www.manaraa.com

In this
ase we just wait until the lo
k is released. The mark remains until thetransa
tion that made the mark releases it. The new isolated pro
edures prevent theformer problem of transa
tions reading and writing to the same lo
ation. John isguaranteed, as long as the transa
tions
ommit, to have $1300 in his a

ount.The lo
king proto
ol
an be a sour
e of many pitfalls. It is important that thedesigner of a system undertands the lo
king proto
ols of the modules he or she is
reating or using. Parti
ular attention should be given to the
ase where transa
tionsrea
h a state where none progress be
ause all are waiting for a lo
k on a parti
ularresour
e. We use the term deadlo
k to refer to su
h a situation [14℄. Several possibleimplementations
an be
onstru
ted to avoid this problem.Some
ommon isolation errors permit one transa
tion to observe the
ompositenature of other transa
tions. Dirty reads allow one transa
tion to see un
ommitted
hanges from another parallel transa
tion. Nonrepeatable reads allow a transa
tionto observe
hanges made when other transa
tions
ommit. Phantom reads involvebeing able to see
hanges that
ould in
rease the size of the results of a databasequery [10, 29℄. Suppose one transa
tion exe
utes a query. Then another transa
tion
ommits a
hange that adds
ontents that also �t the query. If the �rst transa
tionexe
utes the same query again and the new results in
lude the newly added
ontents,we have witnessed a phantom read.A
hieving isolation is an important
on
ern in any transa
tional system. A me
h-anism to read and write data atomi
ally and durably does not prevent the program-mer from violating the ACID design requirements. One example is that of usinglo
ks to isolate the depositpay and paybill pro
edures. The triple store
an be usedto a
hieve sound transa
tions. Database isolation level settings provide isolation forphysi
al data. However, sin
e multiple transa
tions
an run
on
urrently in Haysta
k,programmers must be
areful not to violate any isolation
onstraints when sharingappli
ation data that pertains to triple store data.28

www.manaraa.com

2.2.3 JDBC: A Transa
tional APIThe JDBCStore implementation uses the Java DataBase Conne
tivity (JDBC) API.JDBC provides programmers with a tool to
onne
t to virtually any data sour
e thatuses a tabular stru
ture. These data sour
es may be in the form of
at �les, spread-sheets, or databases. The API uses the Stru
tured Query Language (SQL) languageto
ommuni
ate with the database [25℄. On
e a
onne
tion has been establishedwith the data sour
e, the programmer implements put and get operations to physi
alstorage with a series of SQL statements. Put and get write and read data values,respe
tively. Before being able to use the put and get methods, SQL requires theprogrammer to
reate the tables in whi
h SQL obje
ts will be stored if they do notalready exist. In this se
tion we present an introdu
tion to relational databases, somealternatives to relational databases, a des
ription of some of the te
hnologies spe
i�
to the JDBC API, and a database named PostgreSQL [13, 27℄ that we
urrently useas our JDBC ba
kend.Relational DatabasesThe Stru
tured Query Language (SQL) provides a language for
ommuni
ating with aRelational Database Management System (RDBMS). The JDBCStore implementationwrites its put and get methods as SQL statements. The fundamental stru
ture in aSQL database is a two dimensional table. Columns represent attributes, and rows
ontain values for some or all of the
olumns. This
at table stru
ture alone, however,is not very useful. The power of relational databases
omes from
ombining themany tables that
omprise the database into results for database get operations, orqueries. Get operations may be
ombined through
onjun
tion and/or disjun
tion orhierar
hi
ally to perform
omplex put and get operations.A SQL query may
ombine
olumns from multiple tables. Whenever a booleantest
lause in a query involves two
olumns from di�erent tables we
all the operationa join operation. Querying multiple tables in the absen
e of any join
onstraintsreturns the Cartesian produ
t of the rows from ea
h that satisfy the other query29

www.manaraa.com

RDF Assertionsassertion id subje
t predi
ate obje
t1
owers have petals2
owers bloom in-the-spring3 my-garden has-many
owers4 the-grass is greenFigure 2-5: A Sample SQL Table
onstraints [7℄. Join operations embody the
onstraints ne
essary to des
ribe thesubset of the Cartesian produ
t desired in a query result set. A less restri
tive typeof join,
alled an outer join, does not blo
k a row from sele
tion when the value inone of the tables is empty [11℄.The simplest operations in
luded in the SQL grammar are CREATE TABLE, INSERT,SELECT, UPDATE, DELETE, and DROP TABLE. Users
an't do anything with an emptydatabase that has no tables, so the �rst step is to exe
ute a CREATE TABLE statementthat de�nes the
olumn stru
ture with a SQL type and a name for ea
h
olumn.Often a primary key is designated to uniquely identify a row in the table. Supposewe are de�ning a table named RDF Assertions that has as
olumns an assertion idprimary key, a subje
t, a predi
ate, and an obje
t, as in Figure 2-5. The value ofthe assertion id primary key attribute in the �rst row is 1, and is hen
e a uniqueidenti�er for the row. The RDF Assertions table will not a

ept addition of anotherrow with an assertion id of 1. On
e the table stru
ture has been de�ned, we
anbegin to add data to our database. The INSERT operation adds rows to the table,spe
ifying values for the
olumns. It is one of the SQL put methods. The statementINSERT INTO RDF Assertions VALUES('1', 'flowers', 'have', 'petals')
re-ates the �rst row of Figure 2-5. The SELECT operation
an then be used to gener-ate database queries as mentioned earlier. It is a SQL get method. The opera-tion SELECT * FROM RDF Assertions WHERE assertion id = '1' returns the �rstrow of the RDF Assertions table. The *
hara
ter signi�es sele
tion of every
ol-umn from the table. The UPDATE operation
an modify a row or rows in a table.30

www.manaraa.com

SQL has the power to do a get a
ross rows and put spe
i�ed
olumn
hanges tosele
ted rows. There WHERE
lause again de�nes
onstraints as in the SELECT op-eration. The statement UPDATE RDF Assertions SET obje
t = 'in-the-summer'WHERE predi
ate = 'bloom' updates the obje
t
olumn of the se
ond row of thetable in Figure 2-5 to be the value \in-the-summer". The DELETE operation allowsremoval of a row or rows from a table, and is similarly quali�ed by a set of
onstraints.DELETE is an operation that
ombines a get a
ross rows and a spe
ial type of put thatremoves the sele
ted rows from the table. Finally, if a database table be
omes useless,the DROP TABLE statement
an be used to expunge every row in the table and thetable itself.Be
ause the CREATE TABLE, INSERT, and SELECT statements
an only add infor-mation to the database, the destru
tive impa
t of a malformed statement is oftennot very severe. Mistakes in UPDATE, DELETE, and DROP TABLE statements have a fargreater potential for ruining the
onsisten
y of an appli
ation that uses SQL [12℄. Forthis reason SQL databases frequently have the ability to restri
t
ertain users fromperforming the di�erent types of statements.The Obje
t-Oriented ArgumentAn alternative to relational databases is the obje
t-oriented database [30℄. Obje
t-oriented databases
an store arbitrary data stru
tures, making them
on
eptuallyeasier to understand than relational databases. They are spe
ialized for writing thesedata stru
tures to disk and don't have the query performan
e enhan
ements of rela-tional databases. The puts and gets Haysta
k data requires are very uniform sin
eonly a small part of the appli
ation a
tually
ontrols the data model. Haysta
k userswill also frequently perform queries whi
h tou
h this data model. Obje
t-orienteddatabases are therefore less desirable Haysta
k data storage solutions.Obje
t-Relational DatabasesObje
t-relational databases
ombine the ease of modeling the
omplex data stru
turesof an obje
t-oriented appli
ation with the ability to express varied relational SQL-like31

www.manaraa.com

queries without mu
h
oding overhead. They are useful for
omplex obje
t-orientedappli
ations that would also bene�t from a dynami
 set of query fun
tionality. How-ever, these databases are typi
ally not optimized for transa
tion pro
essing of thefrequent queries we expe
t from Haysta
k [30℄. Our data is also very regular, so wedon't need the
omplex data stru
tures that obje
t-relational databases support.The JDBC APIThe triple store uses the JDBC API to a

ess its database. JDBC is a standard pa
kagein the Java programming pa
kage [32℄. This pa
kage gives the programmer an APIfor
reating a SQL database. The API boasts seamless database
onne
tivity for anumber of the database management systems available. It also provides a me
hanism,for those databases that support it, to serve as the basis for a transa
tion managementsystem.We want Haysta
k to be able to run on as many platforms as possible whileminimizing user overhead. Our
hoi
e of third-party databases should not requirethat the user have a parti
ular database. One of the reasons for
hoosing to useJDBC in our triple store implementation is its ability to use a myriad of data storageappli
ations and formats. We use JDBC with PostgreSQL in the hopes that thetransition to another database will run smoothly.A major weakness of JDBC is its inability to perform the basi
 administrativefun
tions ne
essary to set up the database for use. Perhaps this partially identi�es afault in
onventional system design. JDBC redu
es the problem of using an arbitrarydatabase to the problem of installing and
on�guring that spe
i�
 database properlyand
on�guring the Java Virtual Ma
hine (VM) to
onne
t to it.To perform the ne

essary database installation and setup, we must go throughthe operating system. Setup pro
edures either require writing system dependentHaysta
k install s
ripts to
on�gure and run the database server, or asking the userto perform the install. Ea
h s
enario violates a di�erent Haysta
k design goal. Theformer violates the idea that Haysta
k should run seamlessly on any platform. Thelatter violates the idea that user overhead should be minimal.32

www.manaraa.com

On
e a JDBC
onne
tion
an be
reated, we need to establish our transa
tionproto
ol. The JDBCStore
an dynami
ally load a database-spe
i�
 JDBC driverand establish a
onne
tion. The
onne
tion
an be
on�gured to allow multiple SQLstatements in a single transa
tion. It
an also be
on�gured for the desired transa
tionisolation level. There are several settings for this, but the one we are interested inis referred to as TRANSACTION SERIALIZABLE. This level provides the most restri
tiveset of rules for isolation between transa
tions. It prevents dirty reads, nonrepeatablereads, and phantom reads. Ea
h of these events represents an a
t that would breakthe ACID properties of a transa
tion. There are performan
e
osts when using thisrestri
tive isolation level [29℄. The underlying database probably implements someform of lo
king strategy to ensure isolation of the values transa
tions a

ess. But thebene�ts of ACID
omplian
e are enough to justify these
osts.On
e we have made our
onne
tion and set up our transa
tion strategy, we
anbegin exe
uting SQL
ommands with interfa
es from the java.sql pa
kage [32℄. Atransa
tion is impli
itly open on our
onne
tion at this point. To run another trans-a
tion at the same time, we have to have another
onne
tion. Individual Statementsare obtained from a Conne
tion obje
t. We may exe
ute any valid SQL
ommandon a Statement. If the Statement was a query, we get ba
k a ResultSet obje
tthat allows us to iterate through the results. A Statement works well for datatypesthat
an be easily in
luded in a string and statements that are only exe
uted on
e.The PreparedStatement allows us to optimize performan
e when similar SQL willbe exe
uted repeatedly or with slight parameter
hanges. The parameters
an thenbe set to values of any SQL type. There is a mapping from Java obje
t types to SQLdata types provided. We
an set values on a PreparedStatement, exe
ute one query,
hange the values of the PreparedStatement, and exe
ute that query. After we aredone exe
uting our series of Statements and/or PreparedStatements, we simply
alla
ommit on the
onne
tion. If something goes wrong at any point, we instead
allan abort on the
onne
tion. After the
ommit or abort
all returns, the
onne
tionimpli
itly begins its next transa
tion [25, 29, 32℄.33

www.manaraa.com

PostgreSQLThe triple store was implemented and tested using the database PostgreSQL. It is anopen sour
e database whi
h installs on almost any modern Unix-
ompatible, Win-dows NT-based, or Windows 2000-based operating system. It is an Obje
t-RelationalDatabase Management System [13℄. The PostgreSQL
ommunity
laims to supportalmost all SQL
onstru
ts, in
luding subsele
ts, transa
tions, and user-de�ned typesand fun
tions. The PostgreSQL JDBC driver
laims to support the standard JDBCinterfa
e [32℄, and the
ommunity advises users to
onsult the Sun do
umentation[25, 32℄. Supplementary do
umentation, tutorials, and support may also be found atthe PostgreSQL Web site [27℄.While PostgreSQL is an obje
t-relational database, our interfa
e is restri
ted byour de
ision not to require a parti
ular Haysta
k database ba
kend. We only use thestandard SQL grammar supported by the JDBC interfa
e, even though PostgreSQLo�ers some extensions.2.3 Getting Haysta
k to UnderstandTo help Haysta
k des
ribe its data, the triple store is designed to store a
exibleResour
e Des
ription Framework (RDF) model [15℄. Traditional appli
ations writedown their data using database tables that have no meaning unless we
an understandthe stru
ture and interpretation of the tables. RDF provides a way for an appli
ationto write down di�erent data as des
riptions. These des
riptions give meaning to theappli
ation's internal stru
ture and interpretation of data.The intent is that when Haysta
k migrates its data model to use the triple store, wewill de�ne a Haysta
k RDF model that is
ompatible with Web te
hnologies. We hopeRDF will be
exible enough to make the transition relatively easy. This uniform RDFmodel will make pie
es of a Haysta
k's state more easily portable to other Haysta
ks.We expe
t that
ollaborating Haysta
ks will enhan
e a user's sear
h by asking otherHaysta
ks for help with sear
hes when appropriate. In the future Haysta
k servi
esmay exist to in
orporate and understand information from foreign RDF appli
ations.34

www.manaraa.com

2.3.1 An Introdu
tion to RDF
RDF was
reated to make information available on the World Wide Web ma
hine-understandable [26℄. RDF represents information in the form of an assertion thatdes
ribes some relationship between data obje
ts. An assertion's data obje
ts, orresour
es,
an be any entity, digital or not. The premise is that the metadata thatdes
ribes a resour
e
an provide an understanding of the resour
e. The metadata,whi
h is itself synta
ti
ally indistinguishable from the data, gives
ontext to theresour
e. From this
ontext a ma
hine
an dis
ern meaning.RDF pro
essors
an automate the task of pro
essing the information in an appli-
ation's RDF model. These pro
essors read the
ontents of a model and tra
e themodel's meaning ba
k to something they
an understand. A foreign RDF model mayrefer to s
hemata that de�ne the types it uses to des
ribe its data. The generi

on-
ept of a type or
ategory is
alled a
lass in RDF [15℄. A s
hema may in turn referto
lasses de�ned in other s
hemata. All s
hemata may be tra
ed ba
k to the RDFS
hema Spe
i�
ation 1.0 [15℄. If an RDF pro
essor en
ounters metadata it
annotunderstand, it
an tra
e the
lass hierar
hy ba
k to this s
hema.XML is a syntax one
an use to write down an RDF model. It is a well supportedsyntax that provides information in a ma
hine-readable form [5℄. Future Haysta
kresear
h may in
lude adapting the XML parsing servi
e to read and write to thetriple store. The triple store design evolved from a
ombination of both the
urrentHaysta
k Data Model and the similar RDF model. Using XML to write this modelis beyond the s
ope of this work. XML is des
ribed in detail at the World Wide WebConsortium Web site [5, 14, 16℄. An XML formal grammar that may be helpful inunderstanding RDF terminology is provided for referen
e in Appendix A. The XMLserialization of the RDF S
hema Spe
i�
ation 1.0 found in Appendix B may also beuseful. These appendixes read mu
h like HTML and may still be somewhat usefuleven if the reader is not familiar with XML.35

www.manaraa.com

2.3.2 RDF Basi
sThe most basi
 RDF expressions involve resour
es and properties [26℄. A resour
e is anode in an RDFmodel that
an be identi�ed by a unique Universal Resour
e Indi
ator(URI). URIs are typi
ally
hara
ter strings that identify a resour
e by
on
atenating aproto
ol, a s
ope or namespa
e, and a s
ope-spe
i�
 identi�er. A property is a relationthat embodies some aspe
t,
hara
teristi
, or attribute of a resour
e and maps to somevalue. In obje
t-oriented terminology, resour
es are to obje
ts as properties are toinstan
es. The properties of a resour
e give the resour
e its
ontext and meaning. A
olle
tion of RDF expressions
an be resolved in an RDF data model or
ontext forrepresentation and
omparison. \Two RDF expressions are equivalent if and only iftheir data model respresentations are the same" [26℄.An RDF statement, or assertion, is an ordered RDF triple that
ontains a resour
e,a property of that resour
e, and a value for that property. Hereafter these threestatement elements will be referred to as the assertion's subje
t, predi
ate, and obje
t,respe
tively. The subje
t is any resour
e about whi
h we assert a parti
ular property.The predi
ate is a resour
e that may have other properties atta
hed to it to
larifyits meaning and/or
onstraints on its subje
t and obje
t. The obje
t may be eithera resour
e or literal.It is un
lear to the author exa
tly what an RDF literal is from the literature. Aliteral is primitive data that is not pro
essed by an RDF pro
essor. Literals may ap-pear as XML expressions [26℄. For our purposes in the triple store we a

ept arbitrarybit string literals. An obje
t
an be a literal while a subje
t
annot be a literal. It isun
lear whether or not a predi
ate
an be a literal.The triple store writes its RDF model with statements that
an have only resour
esas subje
t, predi
ate, and obje
t. To store an assertion that
ontains a literal, we�rst store the literal, and instead use the internal resour
e that refers to the literal inthe statement. We note that this requirement merely des
ribes a parti
ular way towrite statements with literals and does not break the RDF spe
i�
ations.In order to represent more
omplex RDF expressions su
h as statements about36

www.manaraa.com

Figure 2-6: A Simple RDF Modelstatements, we have an RDF type system. A type is a spe
i�
 property in the RDFmodel [26℄ whose value des
ribes the type of its subje
t.A
ontainer is a
olle
tion of resour
es. Containers
an express assertions aboutmathemati
al sets. Properties
an be atta
hed to a
ontainer of authors to des
ribesomething about all the authors of Haysta
k do
uments.We
an express higher order des
riptions by writing statements about statements.In order to refer to a statement itself as the subje
t of another statement we mustintrodu
e a resour
e in our model whi
h represents the entire statement. The pro
essof
reating this new resour
e is
alled rei�
ation [26℄. Haysta
k uses a lot of higherorder metadata, so we reify every statement in the triple store.2.3.3 An RDF ExampleConsider the
ase where we have three resour
es
alled \
owers", \have", and\petals". To express the des
ription \
owers have petals", we introdu
e the assertionwith appropriate subje
t, predi
ate, and obje
t to produ
e Figure 2-6. The statementitself is labelled in the �gure as \<statement>".We use nodes to represent resour
es and labelled ar
s to represent properties. Note37

www.manaraa.com

Figure 2-7: An RDF Model for a Rei�ed Statementthat the labels on the ar
s
an themselves be
onsidered resour
es, sin
e propertiesare resour
es. We use abbreviated names at this point and
onsider all identifyingURIs to be in a uniform lo
al s
ope.Now
onsider the
ase where we want to atta
h something to our previous\<statement>". We want to be able to express a statement about our \<statement>".We perform the rei�
ation to obtain Figure 2-7 that has a node for \<statement>".The \<statement>" resour
e has the (attribute, value) pairs f(type, Statement), (sub-je
t,
owers), (predi
ate, have), (obje
t, petals)g
reated by the rei�
ation. The rei�-
ation still expresses the assertion \petals have
owers".Suppose we now want to say \Alyssa P. Ha
ker says
owers have petals". To
ap-ture this statement in our model we atta
h an assertion with the original\<statement>" as the subje
t. We use the property \assertedBy" to embody the
on
ept of one entity saying a
ertain statement holds. Figure 2-8 shows the resultingmodel. The additional \assertedBy" property with value \Alyssa-P-Ha
ker" has beenadded to the \<statement>", giving it more
ontext and meaning. The triple storeinterfa
e automati
ally rei�es all statements by giving ea
h one a new URI.38

www.manaraa.com

Figure 2-8: An RDF Model for a Statement About a Statement2.3.4 Adding S
ope to RDF Resour
esWe now relax our
onstraint that every resour
e in our RDF model must be in lo
als
ope. We allow our model to refer to other RDF models. To a

omplish this taskwe use RDF namespa
es. If an RDF model is written in XML, the model's RDFnamespa
e is the same as the XML namespa
e that des
ribes the model [14℄. Someareas su
h as the �nan
e domain already have well-understood and widely used XMLvo
abularies. Instead of
reating their own namespa
es, RDF models should use thesenamespa
es wherever appropriate.When examining models, RDF pro
essors must be able to re
ognize whi
h re-sour
es are to be pro
essed in the lo
al s
ope and whi
h refer to a foreign s
ope.Re
all that URIs are universal versions of all names used in an RDF model that ex-tend beyond their lo
al model. A resour
e that is outside of lo
al s
ope has a URIthat identi�es the namespa
e to be
onsulted to resolve its meaning [14℄. Sin
e anRDF namespa
e is a spe
ial kind of XML namespa
e it is referred to by the variablepre�x xmlns.We return to the example statement, \Alyssa P. Ha
ker says
owers have39

www.manaraa.com

Figure 2-9: An RDF Model With Namespa
es Identi�ed
petals", and modify it slightly to allow to namespa
es outside of the lo
al s
ope. Werefer to the basi
 resour
es of the RDFModel and Syntax [26℄ with xmlns:rdf=\http://www.w3.org/1999/02/22-rdf-syntax-ns#". This namespa
e de�nes the RDF resour
es\type", \subje
t", \predi
ate", and \obje
t". Suppose further we have a name-spa
e xmlns:a=\http://my-team.org/s
hema/" that des
ribes the \assertedBy" and\have" properties. A �nal namespa
e
lari�
ation might identify the data reposito-ry \http://bar.net/" in whi
h we de�ne the resour
es \Alyssa-P-Ha
ker", \
owers",\petals", and \<statement>". We now have Figure 2-9, whi
h shows a universallyreadable version of the example from Figure 2-8. The higher order statement
annow be read and understood by a remote ma
hine.40

www.manaraa.com

2.3.5 The RDF Type Hierar
hyThe RDF type system will be
ome important in follow up work to this thesis, whenHaysta
k starts using the triple store. It is very similar to the type systems of obje
t-oriented programming languages and is des
ribed in the RDF S
hema Spe
i�
ation1.0 in the xmlns:rdfs=\http://www.w3.org/2000/01/rdf-s
hema#" namespa
e [15℄.Re
all the namespa
e xmlns:rdf presented ealier that de�nes some of the basi
 RDFresour
es [26℄. The author knows of no enfor
ement of the rules given in these s
hema-ta ex
ept possibly the fa
t that models that violate them may not be
onsidered validRDF models at all. In this
ase, RDF pro
essors would be expli
itly forbidden topro
ess them.The basi
s resour
es of the RDF S
hema 1.0 are shown in Figure 2-10. The rootnode is the resour
e \rdfs:Resour
e". Two prin
ipal sub
lasses of this resour
e are\rdfs:Class" and \rdf:Property". The properties \rdf:type" and \rdfs:subClassOf"are used in the �gure to des
ribe the type and
lass hierar
hy of a resour
e. Any
lass de�ned in RDF has \rdf:type" \rdfs:Class", in
luding the resour
e \rdfs:Class"itself. A statement with predi
ate \rdfs:subClassOf" spe
i�es that the subje
t is asubset of the obje
t. Properties may be appended to the model to des
ribe existingresour
es. The \rdfs:subPropertyOf" predi
ate is used in RDF assertions to de
larethat the subje
t is a spe
ialization of the obje
t.For an arbitrary resour
e, the type property is used to signify that the resour
e isan instan
e of the spe
i�ed
lass obje
t. An instan
e of a
lass has all the
hara
ter-isti
s expe
ted of members of that
lass. RDF permits a resour
e to be an instan
e ofmany
lasses. The subClassOf property is a transitive property. To prevent loopingin the model, a
lass
an never be its own sub
lass or a sub
lass of any of its ownsub
lasses. Transitivity also applies to the subPropertyOf property.There are also several extensions to the basi
 property and type system. Proper-ties
an be added to other properties to further des
ribe where they may be legallyapplied. For example, a restri
tion
ould require that a
ertain property may beapplied to at most one subje
t. One extension to the RDF S
hema 1.0 is the DAML41

www.manaraa.com

Figure 2-10: The Prin
ipal Resour
es of the RDF Type Hierar
hyOntology [22℄. The DAML Ontology introdu
es several mathemati
al quali�ers to themodel. It des
ribes set
on
epts su
h as
ardinality, disjoint, disjoint union, interse
t,equivalen
e, membership, and
omplement. The instan
es of a
lass
omprise the setde�ned by a given
lass. The DAML Ontology also de�nes properties about relations,su
h as uniqueness, inversion, and transitivity.We expe
t that Haysta
k will be translated into an RDF model using the toolsprovided by the RDF S
hema and DAML Ontology. As this type system is verysimilar to obje
t-oriented type systems like Java, the migration should be somewhatstraightforward.In the next
hapter we des
ribe the Haysta
k Data Model in more detail anddis
over that Haysta
k already uses metadata relations to express a lot of its state.The next
hapter also presents some of the pro
esses whi
h run in the Haysta
kServi
e Model to help with sear
h tasks. We see that it is important to prote
t datafrom these servi
es to ensure the robustness of the triple store. Some of these servi
esare useful to the triple store and had to be modi�ed for use outside the root server.
42

www.manaraa.com

Chapter 3
The Haysta
k Personalized IR Tool
Many parts of the existing Haysta
k system had profound impa
t on the
reation ofthe triple store. Minimizing user overhead with
exible modules is an important partof both Haysta
k and the triple store.The Haysta
k Data Model (HDM) that was already in pla
e used a lot of metadata.As this data model pre
eded the notion of RDF, it instead used a less uniform storagemodel for its relations. We hope that the triple store will enhan
e the HDM by allowingit to des
ribe itself with RDF assertions.The Haysta
k Servi
e Model (HSM) was important to the triple store as well. TheHaysta
k Trust Model of Chapter 4 has emerged to allow the triple store to make useof lega
y servi
es. The problem with the HSM's existing trust me
hanism was that itpermitted at most one instan
e of a servi
e to run at a time while requiring that allservi
es talk to the root server. Sin
e the triple store
annot break existing
ode, theHaysta
k Trust Model does not a�e
t the operation of the Haysta
k Servi
e Modelpresented here.There are also problems with transa
tion management and robustness in the ex-isting data storage servi
es. The triple store hopes to provide a more robust interfa
ewith working transa
tions.We begin with overviews of the Haysta
k system and some Haysta
k goals to helpthe reader get a
quainted with the proje
t.43

www.manaraa.com

3.1 What Haysta
k DoesThe problem with
urrent information retrieval tools is that their stru
ture often does-n't suit the user's needs. Haysta
k is an e�ort to exploit the potential of informationretrieval for the user.As users add more and more information to their digital information spa
e, organi-zational stru
ture be
omes in
reasingly diÆ
ult to manage. Conventional �le systemsrequire too mu
h stru
ture, and their �les and dire
tories
ontain almost no tra
kingdata to des
ribe their
ontent and layout. File systems make logi
al interpretationdiÆ
ult, espe
ially when trying to understand the �lesystems of friends or
olleagues.The solution seems even more evasive when we look at all the data available on theInternet. The stru
ture of a Haysta
k information spa
e is more
exible and
an
ontain metadata to des
ribe its layout.3.2 Haysta
k GoalsHere we visit,
larify, and modify the lega
y design goals [3℄ of the Haysta
k proje
tin the
ontext of this thesis. Haysta
k should:� in
lude persistent and dependable modules so that users
an rely on it to storeinformation.� provide easy
ustomization.� allow distributed and dynami
ally loadable utilities and servi
es. Utilities shouldbe reusable in other modules whenever possible.� be designed with an eye towards permitting inter-Haysta
k
ollaboration.� give users an easy-to-understand querying me
hanism that provides a

urateIR fun
tions.� provide personalized query results. 44

www.manaraa.com

� provide the ability for users to both expli
itly and impli
itly annotate theirinformation spa
e.� learn from the past, and adapt to the user's
hanging information needs.Sin
e the triple store is a low-level module it is really only
on
erned with the �rst�ve points of persisten
e, easy
ustomization, reusable and loadable utilities, Haysta
k
ollaboration, and a remote query
ommand line.For users to start relying on Haysta
k they must be assured that Haysta
k ispersistent. At the lowest level of persisten
e are data storage layers su
h as thetriple store. The triple store requires little user overhead beyond the administrativetasks of setting up a database and providing a pointer to the right JDBC driver.The JDBCStore also in
orporates reusable and dynami
ally loadable
ommuni
ationutilities. The uniform methods of the RDF triple store will hopefully make des
ribingHaysta
k data to another Haysta
k easier. The triple store module also
ontains askeleton for invoking put and get methods dire
tly to the module from a remote
ommand line.3.3 Haysta
k: The User Perspe
tiveTo use any of the Haysta
k interfa
es, I �rst run a Haysta
k server with defaultpreferen
es. Users
an
hoose from a
ommand line [2, 3℄, a Web
lient, or a JavaGraphi
al User Interfa
e (GUI) [21℄. The remote
ommand line andWeb
lient requirepassword authenti
ation. To these interfa
es we add the skeleton of a remote triplestore
ommand line that also requires password authenti
ation1.I begin by bringing information into my
orpus of data through a pro
ess we
all ar
hiving. Suppose I tell Haysta
k to ar
hive the MIT homepage at \http://web.mit.edu/". The request tells Haysta
k to store the
ontents at that URL, andsome of the links that it provides, into Haysta
k. I
an now perform a query overmy information spa
e with the term \s
ien
e". I am given a list of resour
es,
alled1The triple store and root server
urrently share the same authenti
ation.45

www.manaraa.com

HDM RDFStraw � Resour
eHaysta
kID � URITie � Property(Straw, Tie, Straw) � (Subje
t, Predi
ate, Obje
t)� Statement or AssertionNeedle � LiteralBale � ContainerFigure 3-1: Similarities between the HDM and RDFstraws, representing \s
ien
e" in my Haysta
k. I
an follow a link,
alled a tie, tothe page labelled \Massa
husetts Institute of Te
hnology" and �nd a text des
riptionstating \MIT is devoted to the advan
ement of knowledge and edu
ation of studentsin areas that
ontribute to or prosper in an environment of s
ien
e and te
hnology."The following se
tions look
loser at parts of Haysta
k. We dis
uss the existingpie
es that have had an impa
t on triple store design.3.4 The Haysta
k Data ModelHaysta
ks
ontain straws, ties, needles, and bales. These obje
ts form the basis of thelabelled, dire
ted graph, or digraph, through whi
h a user's sear
hes navigate. AllHDM obje
ts are of type straw and have a unique Haysta
kID to identify them.HDM obje
ts are very similar to RDF obje
ts. The reader may wish to refer toFigure 3-1 as a guide to similarities between the HDM and RDF.3.4.1 StrawsStraws are the basi
 nodes in the HDM digraph [3℄. Everything in this digraph is astraw, in
luding the edges
onne
ting the nodes. Ea
h straw sub
lass has a type thatprovides semanti
 information about the straw. A type
an be used as a
lari�
ationduring sear
h [2℄ if, for instan
e, the user has requested only PostS
ript do
uments.Straws have pointers to their forward and ba
kward edges in the graph.46

www.manaraa.com

A straw obje
t is very similar to an RDF resour
e. All HDM obje
ts are straws,and all RDF obje
ts are resour
es. All straws have a unique Haysta
kID, and all RDFresour
es have a unique URI. The triple store
an be used to represent both an HDMmodel and an RDF model.3.4.2 TiesTies are the edges of the HDM digraph. They are spe
ial types of straws that
onne
ttwo straws in a dire
ted fashion. A tie has exa
tly one spe
ial ba
kward and forwardlink. The ba
kward pointer indi
ates the sour
e about whi
h a tie is
reated. Theforward pointer indi
ates the value of the tie for that sour
e. Additional information,in the form of more ties,
an be added to a tie to expand its semanti
 meaning. Toadd an edge to a tie we transform the edge (tie) into a node and
reate a spe
ialedge to its sour
e and its value. Ties are represented as nodes with spe
ial unlabelledforward and ba
kward edges when we resolve our statement \
owers have petals" inthe HDM in Figure 3-2.A tie is similar to an RDF property. A tie a
ts on a sour
e
onne
ting it to itsvalue, and an RDF property a
ts on a subje
t to provide a parti
ular value. If wetake a tie together with its sour
e and sink straws we have the equivalent of an RDFsubje
t, predi
ate, and obje
t triple. This triple is an RDF statement or assertion.The pro
ess of transforming a tie from an edge to a node in the HDM digraph ofFigure 3-2 serves the same purposes as rei�
ation of an RDF statement. Rei�
ationallows us to atta
h statements to statements.3.4.3 NeedlesNeedles are straws that
ontain a data element, and take the form of lo
ations, �letypes, bodies, and text strings [3℄. They are the raw bit strings in the HDM. Onetype of needle is the bits of a do
ument. Metadata surrounding the
ontents of aneedle usually des
ribes information like how that do
ument should be displayed tothe user and the term frequen
y measurements
al
ulated for retrieval.47

www.manaraa.com

A needle is similar to an RDF literal. Re
all that for the purposes of the triplestore a literal is just a
olle
tion of bits. Raw bits in both models are essentiallyunpro
essed, but in Haysta
k a parti
ular servi
e may read the
ontents of a needleand perform some task in response. The meaning of both a needle and an RDF literalis des
ribed by its atta
hed assertions.To put an RDF statement that
ontains a literal in the triple store, we mustuse a URI that refers to that literal. Needles are the reason for the indire
tion.Sin
e we always have a Haysta
kID that refers to a needle in the HDM, we requirethat we always have a URI that refers to a literal before we use it in the triplestore. As mentioned earlier it was also un
lear to the author exa
tly when literalsare permitted in an RDF statement. Requiring a URI for a literal makes it so thatwe always put non-literals in our statements, and
apture the same meaning. Theproperty \hasBits" is a part of our Haysta
k RDF model that maps a resour
e to aliteral. Assertions
ontaining this property express the
on
ept that a subje
t has abit string representation
orresponding to the appropriate literal.
3.4.4 BalesBales are straws that represent
lusters of related resour
es for a do
ument. A baleis used to en
apsulate the idea of a
olle
tion in Haysta
k. Usually a parti
ulardo
ument type will have a bale of ties that are
ommonly asso
iated with it, su
has \author" and \
reation date". Bales are used for the eÆ
ien
y gains of groupingresour
e
lusters in the HDM [2℄.A bale is similar to an RDF
ontainer. Bales have other straws as members and
an be de�ned for a
ertain purpose, and
ontainers have other resour
es as membersand allow properties to be added to the entire
olle
tion. Bales will be depre
ated byindrodu
ing an appropriate type tie to express the idea of a
ontainer.48

www.manaraa.com

3.4.5 Navigating the ModelOn
e we have stored things in our Haysta
k, how do we get around? When a do
u-ment is ar
hived in Haysta
k, a small web of semanti
 information is atta
hed to thedo
ument. The Haysta
k program has a

ess to the forward and ba
kward links ofa straw and
an follow them to examine this web. All of the semanti
 informationsurrounding a do
ument
an be found in the
onne
ted
omponent of the HDM that
ontains the straw that represents the do
ument. While exe
uting a query, Haysta
k
an sear
h through the do
ument's metadata to determine if it is relevant to theuser's query. Contextual
lues litter the data model, giving Haysta
k the ability tounderstand more about its resour
es. If Haysta
k de
ides a resour
e is relevant, it isreturned to the user in the query results. From this resour
e, the user
an follow thelinks of the data model just as the automated query pro
essing has2.We return to the example in whi
h we modelled the statement \
owers havepetals." This same statement
ould appear as a portion of the Haysta
k Data Model,as shown in Figure 3-2. Here we see a network of straws. Note that ea
h straw, whetherit be a straw, tie, or needle, has an ID asso
iated with it. This is the Haysta
kID. Notethat a straw, in
luding the one with \ID: 1",
an have multiple \ba
k" or \forward"links. A tie has a spe
ial \ba
k" pointer and a spe
ial \forward" pointer identifyingthe two resour
es it
onne
ts. A needle may be resolved dire
tly to a string literal, orany other arbitrary stream of bits, via the appropriate get method.3.5 The Haysta
k Servi
e ModelHaysta
k is driven by its servi
es. Ea
h servi
e has a servi
e name asso
iated withit that provides a semanti
 des
ription of it's fun
tion. There
an be at most oneservi
e with a given name running inside Haysta
k at any time. Servi
es depend onthe existen
e of a root server.In the past the root server was synonymous with the entire Haysta
k program.2The user's view of the data model may be a subset of the view that query servi
es
an traverse.49

www.manaraa.com

Figure 3-2: The HDM for \
owers have petals."
50

www.manaraa.com

We now have a triple store module that runs with or without a root server. Whenwe removed the root server for the �rst time, servi
es be
ame useless. The triple storeuses modi�ed versions of some of the servi
es that are des
ribed in this
hapter.We begin with a de�nition of HsServi
e and dis
uss some other relevant servi
es.
3.5.1 HsServi
eHsServi
e is the super
lass of every Haysta
k servi
e. The HsServi
e
onstru
toris given a servi
e name identi�er made up of the short name, pa
kage, version, and
reator of the servi
e. The short name identi�es the servi
e's Haysta
k type. Thepa
kage identi�es the servi
e's module. The version number
orresponds to the dif-ferent revisions of a parti
ular servi
e's
lass. We envision the dynami
 introdu
tionof new versions in Haysta
k that
an intera
t with older versions or other servi
es.The
reator identi�es the entity that
reated the servi
e. The entire servi
e nametuple uniquely identi�es an instan
e of a servi
e in Haysta
k. Instan
es of HsServi
eshould be instantiated, intialized for use, and
losed for shutdown.Be
ause we
annot use servi
es outside the root server, we have
reated utilitiesthat are more
exible than servi
es. Previously, almost everything added to Haysta
kwas a servi
e that extended HsServi
e. The problem was that these servi
es be
ametoo tightly
oupled with the singleton root server running in Haysta
k. Exa
tly oneinstan
e of a parti
ular servi
e may run in the entire Haysta
k program, and thatservi
e
an only run in the root server module. We wanted to use some servi
es in thetriple store, but
ould not. Utilities provide a solution.
3.5.2 Core Servi
esThe
ore servi
es in
lude the root server, the name servi
e, and the
on�g servi
e [3℄.Other
ore servi
es in
lude loggers,
ounters, and
a
hes. The assumption is thatevery servi
e
an use any of the
ore servi
es sin
e every root server starts them.51

www.manaraa.com

The Root Servi
eAs mentioned earlier, the root server is the primary driver for the Haysta
k IR tool.The root server loads in a dynami
ally
on�gurable set of servi
es a

ording to the
on�g servi
e. The root server's initialization method initializes all servi
es in
ludingthose dynami
ally registered with the name servi
e.The root server is an a

ess point for servi
es to obtain pointers to talk to otherregistered servi
es. A

ess is granted through stati
 Java methods. This means thatno matter how many threads or servi
es there are, they all re
eive the exa
t samepointers when they use the stati
 root server a

essor methods. The result is that theentire Haysta
k pro
ess shares the same instan
es of servi
es. While stati
 a

essorshave some bene�ts within the s
ope of the HSM, this strategy is not useful for othermodules that instead use the more
exible and generi
 utilities.The Name Servi
eThe a

ess point for utilities in the triple store is the name utility, patterned after thename servi
e. The new Haysta
k Trust Model uses this non-root server-spe
i�
 versionof the name servi
e. The name servi
e is used for interservi
e
ommuni
ation. It isessentially a
ontainer of semanti
 pointers to other servi
es. It allows these pointersto be identi�ed by a servi
e name rather than the usual Java-spe
i�
 pointer.A

ess to pointers via servi
e name is more suitable for Haysta
k's dynami
allyloadable servi
es. A servi
e name is a semanti
 des
ription of a servi
e. Servi
es maybe of any type but
an be a

essed via a semanti
 des
ription. The name servi
eallows us to des
ribe servi
es with string identi�ers rather than use the stri
ter rulesof typing [2℄. In the future, the servi
e name may des
ribe how the servi
e is to beused in terms of the Haysta
k RDF ontology.Suppose I want to use the name servi
e to a

ess a query servi
e. In Java I amrestri
ted to using some a

essible
ompiled
lass. Suppose I need to run an oldversion of the query servi
e to �nd results that I was able to �nd a week ago beforeupgrading my Haysta
k. The upgrade repla
ed the old version, but I
an now load52

www.manaraa.com

an old version of the servi
e that was stored in my Haysta
k on disk into the nameservi
e. I
an re
onstru
t the obje
t from its bit stream to
onstru
t the old version'sJava byte
ode. I
an then des
ribe to my name servi
e that I want a pointer to theold query servi
e, and be given a pointer to a type that is not a

essible in Java'sdi
tionary.The name servi
e identi�
ation strategy also be
omes useful when we want toa

ess an obje
t of unknown type. If more semanti
 des
riptions are added to servi
enames we may be able to ask the name servi
e for a servi
e that
an exe
ute a parti
ulartype of query. Suppose we get a pointer to servi
e X that is not of type query servi
ebut
an still handle the task. We
an invoke X's spe
ialized query method withoutknowing its type3.Figure 3-3 shows how Servi
e A
onta
ts Servi
e B through the use of a servi
ename T. The type of the pointer *B returned is di�erent from the type of the semanti
des
ription T. To establish a
onne
tion between Servi
e A and Servi
e B, ea
h onemust �rst be registered with the name servi
e. The name servi
e is a

essible anywhereby
onta
ting the root server. When Servi
e A needs to
omplete task T, it asks thename servi
e for a servi
e whi
h
an help with T. Currently a servi
e name su
h as T
ontains only a name, pa
kage,
reator, and version, any of whi
h may be left out todefault values when requesting a servi
e. After Haysta
k's transformation to an RDFmodel semanti
 des
riptions of tasks may emerge as part of a servi
e name. Servi
eA asks the root server for a pointer to the the servi
e with the des
ription T. Thename servi
e sear
hes its tables for a servi
e whi
h
an help with T. A pointer to theinstan
e of Servi
e B is returned. Now the two servi
es
an begin
ommuni
ating.Take another look at Figure 3-3 and see that everything in the
onventional name-spa
e of the name servi
e is
ontained within the root server. There is at most onename servi
e.The triple store uses a similar name utility that serves the same purpose as the nameservi
e, ex
ept that there
an be one for every module and it does not depend on a3Java provides a me
hanism
alled re
e
tion that lets us
all the named methods of an unkown
lass or obje
t. 53

www.manaraa.com

Figure 3-3: Servi
es Communi
ate via Semanti
 Des
riptions
54

www.manaraa.com

root server. The name utility handles interutility
ommuni
ation via des
riptive utilitynames. One important di�eren
e between the name utility and the name servi
e is thatthe former does not attempt to persistently save any information on disk about thestate of the utilities running within it. It is un
lear exa
tly where an arbitrary nameutility should store its utilities lists. Also, the triple store needs no persistent state sothere is no need to implement this fun
tionality yet.The Con�guration Servi
eThe triple store uses a generi
 version of the
on�g servi
e
alled the
on�g utilitythat does not require a root server. Both serve the identi
al purpose of storing the
on�gurations for a user's Haysta
k. One type of
on�guration is a list of servi
esthat a user wants to load and run in Haysta
k. Unlike most utilities the global
on�gutility is shared by all modules and
ontains defaults for all module instan
es.3.5.3 Data Model Servi
esData model servi
es are those whi
h are permitted to
reate and store HDM straws,ties, needles, and bales. It is data model servi
es that will eventually be modi�ed toa

ess the triple store interfa
e to physi
al storage. A

ess to the triple store moduleshould be limited to data model servi
es,
ore servi
es, and possibly a few others.3.5.4 The Communi
ations ModuleOne of the triple store requirements is that a remote
onne
tion dire
tly to the triplestore should be possible. In order to use the Haysta
k
ommuni
ations and se
uritymodules for this purpose, they had to be modi�ed. These
hanges were an unanti
i-pated part of this thesis, but were ne
essary nonetheless to make servi
e
ode useable.The Haysta
k Trust Model emerged in order to be able to use these servi
es in thesame manner as they are used in the root server. Whenever possible the a
tual fun
-tionality of parts of the Haysta
k Trust Model,
ommuni
ations module, and se
uritymodule was preserved as ea
h was separated from root server dependen
y.55

www.manaraa.com

The
ommuni
ations and se
urity modules support both the root server and theHaysta
k Trust Model
on
urrently. The reason is that nothing introdu
ed by thisthesis
an modify or break the existing root server ar
hite
ture. The module designsthemselves would be
ome mu
h more elegant if the root server were to migrate to theHaysta
k Trust Model, but su
h a
hange is not ne
essary. For now the
ommuni
a-tions module �ts the servi
e de�nition if it is instantiated by the root server, but it�ts the utility de�nition if it is instantiated by a triple store.The
ommuni
ations module in
ludes servi
es4 that permit pro
esses outside theroot server to
ommuni
ate with the root server. Communi
ation involves sending
hara
ter string versions of
ommands a
ross the network to the root server. To usethe
ommuni
ations module with the root server these
ommands must be understoodby the HsCommandAPI servi
e. If instead we are using the
ommuni
ations modulewithin another module su
h as the triple store, the
ommands must be understood bythat module's
ommand API.Remote Servi
e Communi
ationFor servi
es running in a remote pro
ess, it is ne
essary to establish a
onne
tion withthe root server. The root server has a MiddlemanServer listening on a port for
on-ne
tions. The remote
lient uses a Middleman to
onne
t on this remote port. These
urity pa
kage
ontains obje
ts whi
h fa
ilitate the en
ryption of
ommuni
ationbetween middlemen. These se
urity obje
ts are in
orporated into the Middleman andMiddlemanServer, and a password is required from the Middleman
lient. The pass-word and the ensuing
lient session that follows are en
rypted. Pa
kets are en
ryptedwhen
reated, and de
rypted on re
eipt.The middlemen a
t as an intermediary for pro
essing the pa
kets, as seen in Figure3-4. Requests are sent from the
lient side. The request is pa
kaged up in a pa
ketand sent by the Middleman to the MiddlemanServer listening on the other end. Tothe
lient it seems that it is
ommuni
ating only with the Middleman. A
lient request4We use the term servi
es sin
e we are talking about the
ommuni
ations module in the
ontextof the root server in this se
tion. 56

www.manaraa.com

to send a
ommand on the Middleman simply returns the response of pro
essing that
ommand.Behind the s
enes a
ommand pa
ket is
reated, en
rypted, and sent to the server.The server re
eives the
ommand, de
rypts it, and exe
utes the
ommand lo
ally. Aresponse pa
ket is
reated
ontaining the results of lo
al pro
essing, and the newpa
ket is en
rypted and sent ba
k to the
lient.The Command APICommand APIs serve as the the relay agent to pass messages from the Haysta
k
lientand server to their middlemen and ba
k in a typi
al
lient-server dialogue. Figure 3-4tra
es the path of a request from the
lient to the server, and the response ba
k. Inthis example the
ommand line, responding to user input to ar
hive the MIT homepageat \http://web.mit.edu/", begins the dialogue. Time progresses from the upper rightof the �gure
lo
kwise from
lient to server and ba
k to
lient.We sometimes use the term \virtual" to refer to servi
es in the
lient and \real"to refer to servi
es on the server side. Client requests are sent to the Virtual CommandAPI. This API asks the
lientMiddleman to send the en
rypted
ommand out a so
keta
ross the network. The Middleman Server re
eives the
ommand and de
rypts it. Therequest is passed to the Real Command API. The Real Command API sear
hes its tablesof registered
ommands for one that
an deal with the request.The Real Command API �nds and exe
utes the appropriate Ar
hive Command.The Ar
hive Command in turn runs the
ommand on the Root Server, and generatesa response for the Real Command API to send ba
k to the
lient. The response issent via the Middleman Server wrapped as an en
rypted pa
ket a
ross the network.The Middleman re
eives, de
rypts, and returns the response to the Virtual CommandAPI. The Virtual Command API invo
ation �nally returns the response \Ar
hived w/Haysta
kID: 3052" to the Command Line and hen
e the user's terminal. The user istold that the resour
e has been ar
hived and is free to enter new requests. The a
tualar
hiving is queued to minimize the laten
y of the user's request.The triple store
lient uses a similar proto
ol to talk to the triple store server via57

www.manaraa.com

Figure 3-4: A User Requests Ar
hiving of the URL \http://web.mit.edu/".
58

www.manaraa.com

the same
ommuni
ations and se
urity pa
kages presented in this se
tion.3.6 Persistent Storage: The Old WayThere were some problems with the old persistent storage me
hanism that the triplestore will eventually repla
e. It is diÆ
ult to identify the intentions of the old per-sisten
e me
hanism, sin
e parts of it have been dea
tivated or are not implementedin a

ordan
e with
omments and do
umentation. A brief overview may still proveinstru
tive in work that follows this thesis. It is important to note that the root serverstill
urrently uses the old persistent storage tools.The interfa
e to the old storage module is a persistent hashtable. This hashtablestores (key, value) pairs for the Haysta
k Data Model. A

ess to persistent hashtablesis mediated by a module
alled the kernel. Transa
tions would also be mediated bythe kernel, but they are
urrently dea
tivated in the
ode.Many of the ideas of the kernel
ould be used when the triple store repla
es thepersistent hashtable if the kernel is �xed. One problem is improper use of variableswhi
h
an potentially hold transa
tion handles for use in Haysta
k threads. Allthreads share the same transa
tion handle pointer, and
on
urrent transa
tions
ollideas a result.One early step in this thesis improves robustness in Haysta
k with a ba
kupservi
e[23℄. This servi
e periodi
ally halts Haysta
k,
opies the entire state of theHaysta
k Data Model to a ba
kup
opy, then allows Haysta
k to
ontinue. The in-tent is that if Haysta
k enters an impersistent state on failure, we
an at least revertto a somewhat re
ent ba
kup
opy. While the ba
kup servi
e may help with
er-tain failures, the possibility of rea
hing an irre
overable state still exists. If at anypoint the ba
kup servi
e �res with an impersistent Haysta
k, the
lean ba
kup will beoverwritten with a faulty Haysta
k state, ruining the user's Haysta
k.The triple store intends to provide a truly persistent remedy via a working trans-a
tion management system that ACID
ompliant modules
an use. If Haysta
k usesthe triple store
orre
tly, it
an be a valuable improvement over the root server's old59

www.manaraa.com

persistent storage strategy.In the next
hapter we present some of the
hanges that were ne
essary to allowthe triple store to reuse well written and useful servi
es. The Haysta
k Trust Modelpermits reuse of utilities with an ar
hite
ture very similar to the Haysta
k Servi
eModel des
ribed in this
hapter. In many
ases design aspe
ts are simply
opied overto the reusable model. Through slight modi�
ation some servi
es
an be
ome reusableand non-root server-dependent utilities, while safely
oexisting with the
urrent servi
ear
hite
ture.

60

www.manaraa.com

Chapter 4
The Haysta
k Trust Model
The Haysta
k Trust Model is an adaptation of Haysta
k system design that allowsmodules to have their own namespa
es. One or more instan
e of a module may beloaded and unloaded as needed. Emphasis is pla
ed on reuse of submodules to avoidwasteful design and implementation overhead whenever possible. It is now mu
heasier to reuse some pie
es of the Haysta
k proje
t.The Haysta
k Trust Model (HTM) �xes some of the problems
reated by theHaysta
k Servi
e Model, while reusing many earlier Haysta
k design de
isions. TheHTM introdu
es utilities that serve the same purpose as servi
es, but
an be usedin di�erent modules. The HTM allows multiple instan
es of utilities to
oexist indi�erent modules. By
ontrast, exa
tly one instan
e of a parti
ular servi
e may runat a time, and it must run within the root server module. The HTM also fa
ilitates
ommuni
ation between utilities with semanti
 des
riptions, in mu
h the same wayas servi
e inter
ommuni
ation progresses. Communi
ation is permitted between allutilities in a parti
ular web of trust, as
reated by a module. New modules shouldadopt the HTM and in
lude reusable utilities where appropriate.The
reation of the HTM has done little more than make Haysta
k design more
exible. Most of Haysta
k remains un
hanged. The entire servi
e hierar
hy hasnot been
hanged, sin
e su
h a modi�
ation would require editing more than onehundred
lasses. Changing servi
es to the Haysta
k Trust Model is not absolutelyne
essary at this point. However, two lega
y modules were modi�ed. The se
urity61

www.manaraa.com

HsServi
e : root server :: NamedUtility : <arbitrary module>servi
e : servi
e name :: utility : utility nameFigure 4-1: The Relationship Between Servi
es and Utilitiesand
ommuni
ations modules have been adapted to support the more
exible HTM.In order to avoid breaking the root server, these modules
urrently support both theolder Haysta
k Servi
e Model and the newer Haysta
k Trust Model.4.1 A New Distin
tion: Utilities vs. Servi
esWe present the
on
ept of a NamedUtility to improve upon the HsServi
e hierar-
hy. The NamedUtility
lass is the
lass at the top of the utility hierar
hy. Hen
eall utilities are sub
lasses of NamedUtility. A utility is a generi
 servi
e that does notrequire a root server and that permits multiple instan
es of itself in di�erent modules
on
urrently. Figure 4-1 demonstrates the relationship between servi
es and utilities.One of the features of a servi
e is the des
riptive servi
e name it is given upon instan-tiation. The servi
e name is used as a des
ription of the servi
e during interservi
e
ommuni
ation. We use a utility name in pla
e of a servi
e name for utilities in the HT-M. Utility names are used in the same way as servi
e names to maintain a
onstistentdesign throughout the Haysta
k proje
t.A NamedUtility is any utility to whi
h we
an refer via a utility name des
ription.A NamedUtility may optionally register itself with, or de
lare itself an availableresour
e to, a namespa
e. Other utilities in the same web of trust as that namespa
emay then a

ess the NamedUtility via its utility name. We
an register utilities withina single namespa
e upon instantiation. We
an also delay namespa
e registration.Namespa
es for arbitrary modules are presented in more detail in Se
tion 4.3. Autility is also impli
itly initializable and
loseable. These two methods ensure thatthe utility itself is dynami
ally loadable and unloadable.Some servi
es were modi�ed to run as utilities that may be used in any module.The modi�
ation o

urred within the
ommuni
ations and se
urity modules. Both62

www.manaraa.com

modules are used by the triple store and may be useful to any future module thatdesires
ommuni
ation and se
urity. These
lasses are servi
es when instantiated bythe root server module, and utilities when instantiated by the triple store or any othermodule. We still allow them to be servi
es be
ause we require that this thesis leavethe root server module un
hanged. We allow them to be utilities be
ause they areused by the triple store as well. The
onfusion remains be
ause the introdu
tion ofthe HTM
ould not break the way the root server already fun
tions.4.2 Haysta
k Without a Root Server?Previously, the
on
ept of a Haysta
k without a root server did not exist. We nowpresent an alternative to that design where the root server merely represents themodule that performs all of the IR fun
tionality of Haysta
k. In our new model we
an have arbitrary modules, whi
h may use several utilities, running. A module is anyself-
ontained pro
ess running in the Haysta
k memory spa
e. Modules
an talk withdi�erent parts of Haysta
k when permitted by the system. A module might intera
twith the root server, triple store, or any other module, or it might run
ompletely onits own.We are now moving towards a new model of the Haysta
k world, as Figure 4-2shows. This model shows two di�erent aspe
ts of Haysta
k. One part has everythingthat happens inside the Haysta
k pro
ess. The other pie
es are pro
esses runningoutside the Haysta
k pro
ess. The boundary between pro
esses is a grey wavy linein the �gure. Arrows indi
ate
ommuni
ation a
ross the boundaries.The middle of the �gure shows parts of Haysta
k that
an run on the serverside. Above and below the grey boundaries are pro
esses whi
h
an run in remoteprograms. In the old model we always had one root server running on the Haysta
kprogram server side. Now we may run either a root server or a triple store. Note thata solitary triple store does not support the root server IR
apabilities. The design alsomakes it possible to run one root server and many triple stores
on
urrently.The top of Figure 4-2 shows the ways to
onne
t remotely to the root server.63

www.manaraa.com

Figure 4-2: The New Haysta
k Model
64

www.manaraa.com

There exists the possibility for remote servi
es to operate outside of the root server and
ommuni
ate with the root server via a spe
ial servi
e. There is also a remote
ommandline, whi
h makes use of the
ommuni
ations and se
urity modules as servi
es. Thea
tual dialogue is
oordinated by a middleman-to-middleman server
onne
tion. Themiddleman ar
hite
ture en
rypts authenti
ation and the ensuing information ex
hangeusing the se
urity servi
es. There are also other remote user interfa
es, su
h as a Webinterfa
e, that
an
onne
t to appropriate servi
es.The bottom of the �gure shows how one
an remotely
onne
t to a triple store.The triple store uses the
ommuni
ations and se
urity modules as utilities. Using themas utilities just means that they use a triple store namespa
e for interutility
ommu-ni
ation rather than the root server namespa
e. Again the a
tual remote dialoguefollows the middleman ar
hite
ture, in
luding en
ryption and authenti
ation.We expe
t that the root server will eventually migrate to the triple store for per-sistent storage. Currently the root server uses other data stores su
h as the persistenthashtable for this purpose. The
onne
tion between the triple store and the root serveris surrounded by question marks in the �gure. The question marks denote possiblelines of intera
tivity in the future. Sin
e the migration to the triple store has not yetbegun, we don't know whether we will
onne
t with the triple store dire
tly or viafuture modules. Note that a future module may be granted permission to intera
twith the root server, the triple store, or both.Using the Haysta
k Trust Model, the triple store is a modular entity whose u-tilities have less dependen
y
onstraints than their servi
e
ounterparts. We maynow run an arbitrary number of triple store modules on their own. We
an run atriple store without a root server. The triple store module depends only on the ex-isten
e of the haysta
k.utils pa
kage, the haysta
k.se
urity pa
kage, and thehaysta
k.
ommuni
ations pa
kage. This makes sense sin
e the triple store is a u-tility module that uses se
urity for en
ryption and de
ryption and
ommuni
ationsto support remote
lients. It should be noted that the haysta
k.ex
eptions pa
k-age is a
tually required as well, be
ause older Haysta
k modules put their ex
eptionsthere. Ex
eptions are Java obje
ts whi
h are usually used to indi
ate some
riti
al65

www.manaraa.com

or non
riti
al failure during a method exe
ution.4.2.1 The Con�g Utility is Essential (sort of)Previously, we needed to have a root server and all its
ore servi
es in order to runany other part of the Haysta
k program. With the introdu
tion of a standalone triplestore, we require only a
on�g utility. When we say the
on�g utility is essential underthe HTM, we do not mean that all future modules will need it. We just assume thatmost modules will want to make use of the
on�guration
apabilities it o�ers. If thereis no desire to use a set of dynami

on�gurations for a module, it is �ne not to havea
on�g utility.The root server
urrently runs without a
on�g utility be
ause the haysta
k.servi
e pa
kage and all subpa
kages were never tou
hed during
reation of the triplestore. The root server runs with its own
on�g servi
e. The
on�g servi
e and
on�gutility support identi
al fun
tionality ex
ept that the servi
e version may only be usedwithin the root server. For the root server to
reate and use a
ompletely separatemodule su
h as the triple store, it must �rst initialize a global
on�g utility.4.2.2 Other Essential UtilitiesThe logging
apabilities present in the root server may be modi�ed for future use byutilities. We re
ognize that logging is probably useful in the regular operation anddebugging of any module. For this reason, we may eventually require the existen
e of alogging utility. It is important that this and any other utility dependen
ies be examined
losely before adding them to the HTM. Otherwise we may end up over
onstrainingour utility model and
reating the same problems we fa
ed with the servi
e model.4.3 A Per-Module Namespa
e UtilityThe entity a NamedUtility registers with is
alled a name utility. The name utilityis a NamedUtility, but does not register with itself. The name utility represents a66

www.manaraa.com

namespa
e whi
h is an area of trusted
ommuni
ation between utilities. There is aglobal namespa
e and a module-spe
i�
 namespa
e. If a NamedUtility is registeredwith the global namespa
e then anything in the Haysta
k program is in its trusted weband
an
ommuni
ate with it. If instead the NamedUtility registers with a module-spe
i�
 namespa
e, a

ess to the utility is limited to those within that namespa
e.4.3.1 A Namespa
e ExampleFigure 4-3 depi
ts the
reation of the JDBCStore module and its subsequent intera
-tion with the namespa
e. Module-spe
i�
 namespa
es are
reated by the
ommandgetNextNameSpa
eID in the Loadables
lass. This returns a key for using the name-spa
e in the future.We
all a module a bla
k box if the internal ma
hinery of the module
annot beexposed. The programmer is restri
ted to an API of input and output methods. Abla
k box module is
reated by instantiating and initializing a single instan
e of a
lass. We
all this instan
e the
ontrolling
lass of the module, sin
e the interfa
esit implements are the only methods available outside the bla
k box. A module
anbe a true bla
k box if its
ontrolling
lass never exposes the namespa
e key it usesin internal methods. The JDBCStore implementation of the triple store is one su
hmodule
ontroller.Time progresses in the �gure from top to bottom. To the left of the JDBCStoreboundary is the module
reator's namespa
e. The inputs and outputs of methods
ross this line, but the bla
k box of the JDBCStore is maintained so long as no utilitypointer or namespa
e key is sent a
ross the boundary.4.3.2 Who Controls a Namespa
e?The JDBCStore
reates a namespa
e when it is instantiated, and hides the namespa
ekey within its private representation. During initialization it
an then
reate newutilities and pass them the namespa
e key, as with utilities A and B in the �gure.Passing the namespa
e key to ea
h NamedUtility's
onstru
tor registers the new67

www.manaraa.com

utility in the module's namespa
e. The utility keeps a
opy of the key in order to
ommuni
ate with other utilities in the namespa
e.
4.3.3 The Namespa
e De�nes a Web of TrustThe namespa
e key de�nes a web of trust for a module. Suppose methodX() isinvoked, as per Figure 4-3. Utility A
an use its
opy of the key to get the nameutility by invoking Loadables.getNextNameSpa
eID(). Utility A
an
hoose to geta pointer to another registered utility using a get(T) symanti
 method
all. Utility Aobtains a pointer to Utility B, and intera
tion follows. Eventually the method returnso, some arbitrary obje
t.The key is veri�ed before the Loadables
lass will return a pointer to the ap-propriate name utility. Veri�
ation is done by
he
king that it is a pointer to thea
tual identi�er obje
t
reated when the namespa
e itself was
reated. Java preventsother modules from arti�
ially
reating this pointer. The only way to grant a

essto the key is to pass it expli
itly to another module. With the key a utility
an usesemanti
 des
riptions to request
ommuni
ation with other utilities in its namespa
e.The methods for a

essing and managing the namespa
e are very similar to those inthe name servi
e. Methods were kept the same for uniformity. However, the nameutility adds the ability to restri
t a

ess to its namespa
e and to
reate an arbitrarynumber of namespa
es.There is one fundamental di�eren
e between a name utility and the name servi
e.The name servi
e stores information about the servi
es that register with it peristentlyon disk. The name utility stores nothing perisistently on disk. The reason su
h
apabilities were not in
luded in the name utility is that the triple store module doesnot require saving the state of any of its utilities. If a new module wants to save thisinformation, the peristent namespa
e fun
tionality would have to be added.68

www.manaraa.com

Figure 4-3: A Sample Module Controls its Namespa
e69

www.manaraa.com

4.3.4 Dynami
 In
lusion in a Namespa
eAnother feature of the name utility is that it
an dynami
ally load and unload theentire namespa
e. When the module
ontroller is
reated, it
reates a namespa
e.Utilities
an be registered in the namespa
e to intera
t. For example, a list of utilitiesstored in the global
on�g utility may
ontain utilities to load dynami
ally. If those
lasses are
reated with the namespa
e key argument, they are registered in thenamespa
e.4.3.5 Cleaning Up a Namespa
eTo
lose the module we simply
all the
lose method on the module
ontroller as inFigure 4-3. JDBCStore in turn asks expli
itly loaded utilities to
lose, and
an then askthe namespa
e itself to
lose. The name utility iterates through all registered utilitiesand
loses ea
h one. When �nished, the namespa
e, and thus the module itself, hasbeen unloaded.4.3.6 When is a New Namespa
e Ne
essary?Utilities registered in a parti
ular namespa
e are unique to that namespa
e. Theutility name des
ription uniquely identi�es a single utility. So we know we need a newnamespa
e when we want to
reate a new instan
e of some already registered utility,or if we want to
reate a new web of trust for a submodule. One way to ha
k aroundthe uniqueness
onstraint is to modify the utility name with some arbitrary
hara
terstring extension to one of the identi�ers.Suppose we are within a
ertain module namespa
e and want to
reate a submod-ule with its own namespa
e. The advantage of
reating a subnamespa
e is that thebla
k box
onstraint
an be enfor
ed within the submodule. The submodule preventsa

ess to its utilities by keeping its namespa
e key hidden, and a new web of trust is
reated. 70

www.manaraa.com

Figure 4-4: The Namespa
e View of the World4.4 A More Modular Haysta
kWe now revisit the new Haysta
k Trust Model in terms of the namespa
e stru
ture ofall of Haysta
k. Re
all that all new modules may have an asso
iated namespa
e butthat the root server has a spe
ial namespa
e maintained by the name servi
e. Figure4-4 shows the namespa
e view of the Haysta
k ar
hite
ture. Phrases in parenthesesdenote the a

essability of ea
h module's namespa
e. Note that anything in the JavaVirtual Ma
hine (VM) has a

ess to both the Loadable's global namespa
e and theroot server's name servi
e. Module D has returned its namespa
e key to the rest ofthe Haysta
k appli
ation. We assume the worst
ase and say that its namespa
e isa

essible anywhere in the program. Module C and the two triple stores have kepttheir keys and therefore their namespa
es private.Nothing in the root server a
tually uses the utility loader. We have not yet modi�ed71

www.manaraa.com

the servi
e ar
hite
ture. We
ould in the future port the root server to the new modeland a
tually make use of a name utility instead of a name servi
e. The bene�t wouldbe that more servi
es would be reusable. However, doing so would require modifyingevery blo
k of
ode where a servi
e uses the name servi
e. Sin
e this happens veryfrequently, we may just
reate a name utility for the root server to use only for newservi
es, avoiding the task of modifying existing servi
es. Right now the
hange is not
riti
al, as long as we keep in mind that the root server's name servi
e is exposed toall modules within the Haysta
k appli
ation.4.5 Adding A New ModuleThe steps for
reating a new module are now a lot easier. Suppose we want to intro-du
e the triple store module. To run a triple store we need a
ontroller
lass su
h as aJDBCStore. JDBCStore
reates a new namespa
e in its
onstru
tor and initializes anyutilities it plans to use, giving the appropriate ones a

ess to the trusted namespa
e.Expli
itly
reated utilities are
ore utilities of the module on whi
h other utilities maydepend. A middleman server is one utility that the JDBCStore
an expli
itly
reate.A JDBCStore also sear
hes the global
on�g utility for a list of utilities to dynami
al-ly load. One utility that the JDBCStore dynami
ally loads is a
ommand API. The
ommand API is given the namespa
e key on instantiation. On
e all utilities havebeen registered, the namespa
e is initialized, along with all registered utilities. TheJDBCStore istan
e is now ready for use. Closing a JDBCStore
loses all expli
itly
re-ated utilities, then
loses the namespa
e. Re
all that
losing a namespa
e
losesall dynami
ally loaded utilities.To use the
ommuni
ations module we spe
ify the appropriate middleman serverparameters in our JDBCStore
onstru
tor. JDBCStore
ommuni
ations fun
tionali-ty is patterned dire
tly after the way the root server uses
ommuni
ations. Wegive the middleman server the namespa
e key when
alling its
onstru
tor. Otherwisethe middleman server won't be able to
ommuni
ate with our module. A spe
ialized
ommand API is optionally loaded a

ording to default
on�gurations. Note that72

www.manaraa.com

while we
an use a generi
 middleman server, we must use a module-spe
i�

om-mand API implementation that spe
i�es how to deal with
ommands as they arrive.To do this we simply extend haysta
k.utils.CommandAPI with a new interfa
e,haysta
k.ts.CommandAPI, that
an serve as the remote triple store API.We also have a real and a virtual
ommand API implementation. The real andvirtual APIs implement the haysta
k.ts.CommandAPI interfa
e. The invoke andregister methods will do di�erent things depending on whether we are a
lient(virtual) or server (real) API. The virtual API will simply forward register andinvoke requests to the middleman and wait for the appropriate response. The realAPI will a
tually pro
ess the register or invoke request. In the former
ase a new
ommand is registered in the library of known
ommands. In the latter
ase the API
he
ks if there is an appropriate
ommand in its library. If yes, the request is sentto that
ommand. If no, an appropriate error message is returned. Currently onlya skeleton for remote
ommand pro
essing has been set up. No
ommands a
tuallyregister with the triple store
ommand API.To run a
ommand line in our TripleStoreClient, we extend haysta
k.utils.CommandLine with haysta
k.ts.CommandLine. We keep the generi

ommand lineparser, so the only thing we implement is the namespa
e-key-aware
onstru
torand the getCommandAPI method. The former registers the
ommand line in thenamespa
e. The latter sele
ts the
orre
t
ommand API as per the module-spe
i�
haysta
k.ts.CommandAPI's utility name. Note that in order to use a
ommand line wemust already have a triple store
ommand API registered in the namespa
e. This isbe
ause
ommand lines do nothing without an API.Creating a server for a new module is as easy as running a middleman serverand
reating a
ommand API (and a modi�ed
ommand line if desired). Creating a
lient is as easy as extending the haysta
k.utils.Generi
Client abstra
t
lass andimplementing methods that assign the appropriate server network address and port,
reate the appropriate
ommand line, and initialize the appropriate default utilities the
lient will use. The TripleStoreClient is one su
h extension of the generi

lient.This method of addition of a new module is very similar to the steps used by the73

www.manaraa.com

root server. The middleman and
ommand ar
hite
ture are very similar. However,under the new namespa
e approa
h we
an now have more than one server at a timeand reuse things su
h as the
ommuni
ations module and the generi

lient.

74

www.manaraa.com

Chapter 5
The TripleStore Interfa
e
This
hapter presents the triple store interfa
e that provides the basi
 put and getoperations for an RDF model. The triple store is the
rux of this thesis. The simpli
ityand uniformity of this interfa
e will make it a useful data store for the Haysta
kData Model. It's transa
tion
ontra
t provides the ability to a
hieve ACID-
ompliantrobustness. Support for storage of RDF assertions makes it a
exible storage layer.The interfa
e design anti
ipates multiple triple stores
onne
ted to di�erent ba
kends.The interfa
e is a bla
k box module that never exposes anything from its internalweb of trust.As a
aveat, remember that simply having a transa
tion management system doesnot prevent failure in modules that use them. It is still possible to violate isolation
onstraints on
a
hed obje
ts, for instan
e. Refer to Se
tion 2.2.2 for a review of theisolation requirements for an ACID-
ompliant system. The transa
tion managementsystem
reated by the TripleStore1 interfa
e is just a tool box for building an ACID-
ompliant module. This thesis deals primarily with the JDBCStore implementationof the TripleStore that is des
ribed in Chapter 6. It is possible that some futureimplementation might fail to adhere to the transa
tion
ontra
t if it is not
arefullywritten.In this
hapter, we present the transa
tion
ontra
t in detail. We then des
ribe1The TripleStore is the a
tual Java interfa
e. It supports the methods of th abstra
t triple storeinterfa
e 75

www.manaraa.com

brie
y how a triple store
an save a
exible graph for the root server. Next the abstra
tinterfa
e is presented. We then explain how this interfa
e be
omes useful as a tool forwriting down the meaning of Haysta
k information in an RDF assertion store. We
on
lude with a des
ription of the me
hanism for
ommuni
ating with a TripleStoreboth within the lo
al appli
ation and remotely via the middleman ar
hite
ture.5.1 The Transa
tion Contra
tThe triple store provides a transa
tion management proto
ol that
an be used toa
hieve robustness in Haysta
k. The basi

ontra
t is simple.� BEGIN TRANSACTION: Begins a new transa
tion. Transa
tions may behandled either impli
itly within a given thread for a given instan
e of a triplestore, or expli
itly via transa
tion handles passed in to ea
h method.� INTERACT WITH TRIPLE STORE: On
e a transa
tion is open, the getand put methods of the triple store may be exe
uted. Note that while the a
tual
opies of data in the database will be isolated, this
annot ensure isolation ofany
a
hed versions or
opies of that data whi
h might be shared with otherthreads.� ABORT TRANSACTION: This method allows everything exe
uted sin
ethe BEGIN TRANSACTION
all to be aborted. A transa
tion may be abortedbe
ause some part of the transa
tion has
aused an error, or be
ause the de
isionhas been made to drop a transa
tion.� COMMIT TRANSACTION: This method allows everything exe
uted sin
ethe BEGIN TRANSACTION
all to
ommit and be
ome part of persistentstorage. This is the most
ommonly expe
ted
on
lusion of a transa
tion.In order to
ommen
e a transa
tion, BEGIN TRANSACTION must be exe
uted.Transa
tions may be maintained impli
itly on a per-thread-per-instan
e basis or ex-pli
itly with a transa
tion handle obje
t. Ea
h impli
it transa
tion handle may be76

www.manaraa.com

used in only one thread for a given triple store. An expli
it transa
tion handle maybe used to pass a transa
tion around in several threads. Spe
ial attention to isola-tion and
oordination is advised when attempting to use transa
tion handles in thisway. The transa
tion handle goes through some authenti
ation ea
h time it is used.If at any point an invalid handle is used, or if no transa
tion is open for the giventhread-instan
e, an appropriate Transa
tionEx
eption is thrown. A valid handle isa handle that was obtained from a parti
ular instan
e of a triple store.A parti
ular implementation of the triple store may optionally
hoose to permit atransa
tion handle from one instan
e to be used on another instan
e. Two JDBCStoreinstan
es allow transa
tion handles from ea
h other only if they both
onne
t to thesame a
tual underlying database with the same username.On
e a transa
tion is open, the module using it must realize that it has seized aresour
e and that it is blo
king the rest of the system from using that resour
e. Inthe
ase of the JDBCStore this resour
e is an a
tual database
onne
tion,
urrentlylimited in number to a
ompile-time
onstant for every instan
e. Even if a moredynami

onne
tion pool is
reated in the future, resour
es will still not be releaseduntil either an ABORT TRANSACTION or COMMIT TRANSACTION method is
alled.With an open transa
tion, other triple store methods may be exe
uted on demand.These methods are des
ribed in detail in the interfa
e de�nition dis
ussed in Se
tion5.3. Note that at any point a Transa
tionEx
eption indi
ates an attempt to usean invalid handle or the absen
e of a transa
tion in the given thread and instan
e.If an AbortEx
eption is returned during exe
ution of a transa
tion, there was someproblem intera
ting with the underlying data store. In most
ases a problem withthe data store indi
ates the need to abort the transa
tion.It is good programming pra
ti
e to ensure that everything
an be exe
uted to
ompletion before the de
ision is made to
ommit. When the root server begins touse a triple store for persisten
e, we must remember that aborts must be possible anytime before the
ommit point. 77

www.manaraa.com

The COMMIT TRANSACTION and ABORT TRANSACTION methods mark atransa
tion appropriately, taking
are of all disk
hanges and freeing up the underlyingresour
e so that other parts of the system may use it. Either method may throw anAbortEx
eption. In the JDBCStore implementation an AbortEx
eption is thrownif the
ommit or abort throws a SQLEx
eption from the Java JDBC layer.On
e the
ommit or abort method
ompletes, the underlying resour
e in a trans-a
tion is freed. If we are using an impli
it transa
tion handle, then no transa
tionis open in the thread and instan
e. If we are using an expli
it transa
tion handle,then it is no longer valid sin
e the resour
e atta
hed to the handle has been released.We must exe
ute another BEGIN TRANSACTION statement to
ommen
e with thenext transa
tion.There is no need for an expli
it re
overy pro
edure for the triple store module.State is meaningless until a
ommit, and
ommits are permanent. Our intent is thatthe triple store
an safely fail at any time. Re
overy is impli
itly handled by theunderlying database of the JDBCStore.5.2 A Flexible Graph for Haysta
kAs mentioned earlier, one of the requirements of our persistent storage interfa
e isthat it provide a
exible layer for the Haysta
k Data Model. The triple store interfa
epermits su
h a model. Given any graph, we
an represent it with ordered triples.Any
on
ept or stru
ture
an be des
ribed in terms of these triples. The graph maybe updated through deletion and insertion of triples and literals.On
e Haysta
k has migrated to the triple store ba
k end, the obje
ts of the HDMwill be stored as triples. Straws, ties, needles, and bales will serialize their states interms of a series of triples. Saving any of these obje
ts to disk will mean savingall triples representing its state. The
ontents of needles will be saved by storing orretrieving arbitrary bits. Sin
e there is no update
on
ept in the triple store, there willbe no update pro
edures for Haysta
k. Updates will be a
hieved by erasing one pie
eof information and repla
ing it with another. This is in keeping with the immutable78

www.manaraa.com

CONSTRUCTOR instantiates a triple store implementationINIT initializes the triple store for useBEGIN TRANSACTION
ommen
es a transa
tionCOMMIT TRANSACTION
ommits an open transa
tionABORT TRANSACTION aborts an open transa
tionPUT ASSERTION puts a (subje
t, obje
t, predi
ate) assertionPUT BITS puts a
olle
tion of bitsGET SUBJECT gets the subje
t's URI for an assertionGET PREDICATE gets the predi
ate's URI for an assertionGET OBJECT gets the obje
t's URI for an assertionGET BITS gets the bits asso
iated with a literal URIGET LITERAL URI gets the lo
al URI for a given literalGET ASSERTIONS BY SUBJECT gets assertions with spe
i�ed subje
tGET ASSERTIONS BY PREDICATE gets assertions with spe
i�ed predi
ateGET ASSERTIONS BY OBJECT gets assertions with spe
i�ed obje
tGET ALL ASSERTIONS gets all assertionsCONTAINS URI tests whether a URI
an be foundEXPUNGE expunges every o

urren
e of a URICLOSE
loses triple store,
leans up its namespa
eFigure 5-1: The Triple Store Abstra
t Method Listnature of data in the Haysta
k IR tool. If a parti
ular literal
hanges state it is nolonger the same entity.
5.3 The TripleStore Interfa
eThe TripleStore interfa
e
urrently supports the abstra
t methods in Figure 5-1. Thislist en
ompasses the abstra
t fun
tionality of the triple store. There is no type systemde�ned be
ause we expe
t a
lient to de�ne its own RDF type system. All resour
esare simply referred to by their URI when using the triple store methods. There are
urrently two ways to a

ess the triple store interfa
e: dire
tly through Java methodson a
lass that implements the TripleStore interfa
e or remotely through a set of
ommands registered in the
ommand API.The methods INIT and CLOSE are implemented to
omply with the guidelines fordynami
ally loadable and unloadable modules spe
i�ed by the Haysta
k Trust Modelof Chapter 4. The methods BEGIN TRANSACTION, COMMIT TRANSACTION,79

www.manaraa.com

and ABORT TRANSACTION have already been dis
ussed.We turn now to the methods whi
h may modify the
ontents on disk. Thesein
lude PUT ASSERTION, PUT BITS, and EXPUNGE. The PUT ASSERTION
ommand takes an ordered list of three URIs representing resour
es and
reates atriple in the triple store for that assertion. The return type of this method is aURI identifying the assertion resour
e just
reated. The PUT BITS
ommand takesan arbitrary set of bits and stores them in the triple store. PUT BITS returns theURI identifying the resour
e whi
h maps dire
tly to the bit set. Sin
e Haysta
k isa Java pro
ess, a
olle
tion of bits is an arbitrary obje
t that is stored on disk byserializing the obje
t, or writing its bits down sequentially. Returning those bits later
orresponds to deserializing the obje
t for use. EXPUNGE performs a sear
h anddestroy on the database for a given URI. If the URI refers to a literal, the literal isremoved. If the URI refers to an assertion, the assertion is removed. Any assertionthat refers to an expunged URI is also expunged. It is re
ommended, at least for thepurposes of an RDF model, that the programmer be sure of what the rami�
ationsare of expunging a URI.There are also several read-only methods available on the triple store. These in-
lude GET SUBJECT, GET PREDICATE, GET OBJECT, GET BITS, GET URI,GET ASSERTIONS BY SUBJECT, GET ASSERTIONS BY PREDICATE, GETASSERTIONS BY OBJECT, GET ALL ASSERTIONS, and CONTAINS URI. TheGET SUBJECT/PREDICATE/PREDICATE method simply returns the URI of thesubje
t/predi
ate/obje
t of the assertion argument. The GET BITS operation re-trieves the bit string for a resour
e from disk in the form of anobje
t. The GET LITERAL URI method gets the triple store's URI for a given inputliteral obje
t. The GET ASSERTIONS BY SUBJECT/PREDICATE/OBJECTmethod gets an enumeration of every assertion with the spe
i�ed resour
e as thesubje
t/predi
ate/obje
t. GET ALL ASSERTIONS will retrieve an enumeration ofevery assertion in the triple store. CONTAINS URI simply sear
hes the entire triplestore for an o

urren
e of the resour
e spe
i�ed. It returns true if and only if theresour
e is referred to somewhere in the triple store.80

www.manaraa.com

We use a URI in pla
e of an assertion, subje
t, predi
ate, or obje
t, sin
e allresour
es
an be identi�ed by a URI. We have no type system written into our resour
emodel, and instead refer to a resour
e by just its URI identi�er. A triple store
lientmay
hoose to store resour
es of its own type system in the model.It is important to note that the triple store interfa
e provides no means for anoutside entity to
reate a new URI within its own namespa
e. The triple store therefore
ontrols its own URI spa
e. The only way a new lo
al URI is
reated is by addingliterals and assertions. By
ontrast, we may use remote URIs within the triple store'sassertions. Everything in the model
an therefore be tra
ed ba
k to a literal in ourlo
al model or some remote RDF repository.5.4 A Better Understanding Through RDF TripleStoresThe triple store helps
lients re
ord their state uniformly. As we argued in our RDFdes
ription of Se
tion 2.3, a
lient that follows the RDF model
an store the meaningof its state with metadata. RDF is powerful enough to allow arbitrary agents thatunderstand the RDF model to translate an arbitrary domain of knowledge into termsit
an understand. It does this by looking up the domain ontologies to whi
h theforeign RDFmodel refers. It
an then translate those ontologies into the RDF s
hema,whi
h the arbitrary agent might then understand. These features may be helpful tothe
ollaborating Haysta
ks of the future.5.4.1 A Uniform API for Storing RDF ModelsThe Haysta
k IR tool wishes to eventually understand its own data as well as datastored in other Haysta
ks and foreign RDF appli
ations. Sin
e the triple store is well-suited for storing RDF models, these
apabilities will be
ome feasible when Haysta
kuses the triple store.Building an RDF onotology to use with a triple store will require some work.81

www.manaraa.com

Eventually the Haysta
k IR tool will store its data model in the triple store a

ordingto a Haysta
k ontology. We
an refer the
ontext of our model to the namespa
e ofthe RDF s
hema 1.0, for instan
e, by storing the URI literals therein. On
e we haveput the URIs of resour
es,
lasses, properties, et
., from that s
hema into our model,we
an begin adding statements to further de�ne the Haysta
k ontology. We mayalso wish to refer to the URIs from separate useful RDF ontologies.In order to add assertions to a triple store we must re
ognize that the triple store
ontrols its lo
al URI namespa
e. We
an use any lo
al URI that is already stored inthe triple store. We also
reate new lo
al URIs by adding assertions or literals. Whenliterals are stored as bits, a lo
al URI is
reated and returned to the
lient for usein assertions. We
an also use foreign URIs in our statements. The
lient
an start
reating RDF statements out of URIs by using the PUT ASSERTION
ommand.We introdu
e in our triple store a small level of indire
tion where literals are �rstreferred to by a lo
al resour
e before
reating statements with them. This is so we
anthen refer to the literal with our own lo
al URI identi�er. We do this to be
onsistentwith the Haysta
k Data Model. Every straw has a Haysta
kID asso
iated with itthat will eventually be repla
ed by a URI. Needles are straws that
ontain arbitrarybit strings. Sin
e needles will require Haysta
kIDs, our literals require URIs. Theindire
tion does not break the RDF model and redu
es namespa
e
ollisions.We use an monotoni
ally in
reasing
ounter to generate the URIs for the triplestore. An alternative approa
h is to use MD-5 hashes to determine URIs. For a literal,the URI would be an MD-5 hash of its bit string. For an assertion, the URI would bean MD-5 hash of some
on
atenation of the URIs of the subje
t, predi
ate, and obje
t.For literals, we would be guaranteed that the same bit string would always resolveto the same URI, and hen
e be indistinguishable from the other bitwise equivalentbit strings. The
han
e that any two distin
t bit strings would map to the same URIunder this strategy is negligible. One disadvantage of this approa
h is that statingthe same assertion again would not add anything to the model, sin
e the same URIwould refer to both the original and the new statement. We may want to state thesame assertion several times if we are using an eviden
e a

umulation strategy in82

www.manaraa.com

our RDF appli
ation wherein stating an assertion multiple times might make it morebelievable.5.4.2 Rei�ed StatementsIn RDF we
an write a statement either as an ordered sequen
e of subje
t, predi
ate,and obje
t resour
es, or as a rei�ed statement. A rei�ed statement has the statementitself as a resour
e, with the restri
tion that upon
reation that resour
e have anrdf:subje
t predi
ate with subje
t obje
t, an rdf:predi
ate predi
ate with predi
ateobje
t, and so on. On
e we have the rei�ed statement we
an atta
h properties tothe statement resour
e to give it more
ontext.The triple store automati
ally rei�es all statements by returning a URI identi�er forstatements upon
reation. Impli
itly present in methods su
h as GET SUBJECT isan rdf:subje
t predi
ate with the asso
iated subje
t obje
t atta
hed to the statement.5.5 Using the TripleStoreThere are two ways to use the triple store interfa
e's abstra
t methods. The simpleway is dire
tly using Java method
alls. The other way is using remote a

ess.5.5.1 Dire
tly Through JavaTo run an instan
e of a triple store lo
ally we instantiate the JDBCStore implementa-tion, and then
all its init method. We then have a triple store module that we
anuse a

ording to the abstra
t methods. The
on
rete Java forms of these methods, asde�ned in the TripleStore interfa
e, have similar Java method names, arguments,and return types. If we are using an expli
it transa
tion handle, we must use thathandle on the
orre
t triple store. If we are using an impli
it transa
tion handle, wemust be sure a transa
tion is open for the
urrent thread and instan
e. When ex
ep-tions are
aught we have to de
ide whether or not to abort the transa
tion. To
losethe triple store we should
all its
lose method.83

www.manaraa.com

5.5.2 Remotely via MiddlemenRemote a

ess is
urrently a

omplished by
reating a JDBCStore
on�gured to usethe middleman
ommuni
ation ar
hite
ture. The
on�guration is done by providingthe appropriate port number to the JDBCStore
onstru
tor. The JDBCStore thenruns a middleman server inside its namespa
e to wait for
lient
onne
tions. Client
onne
tions use the TripleStoreClient, a generi

lient with triple store-spe
i�
default settings.On
e a
lient is running we have an intera
tive
ommand line to
ommuni
atewith our triple store. The triple store
lient
an
urrently provide authenti
ation tolog on to the JDBCStore remotely. It
an also send en
rypted string
ommands to thetriple store server. In the future
ommands re
eived on the server side will performthe appropriate put and get methods, returning the results to the
lient.Understanding how the triple store interfa
e works is important for using the mod-ule. In order to improve or �x problems with the module, we must examine the im-plementation. The next
hapter des
ribes some of the high-level
omponents used bythe JDBCStore module
ontroller to ful�ll the tasks required of a triple store.

84

www.manaraa.com

Chapter 6
Implementating the TripleStore
The TripleStore interfa
e is implemented by the JDBCStore
lass. Here we pro-vide some insight into the inner ma
hinery of a JDBCStore. We fo
us on high-level
omponents of the module and dis
uss design rather than a
tual Java
ode. Sin
ethe ar
hite
ture of parts of the module rely on the
apabilities of Java programming,parti
ularly the rules about a

ess privileges, a ba
kground in Java is helpful in un-derstanding this
hapter. The reader may wish to
onsult a Java referen
e guide[9℄.While this
hapter des
ribes only one implementation of the triple store, manyvariations are possible. Future implementations should adhere to the TripleStoreinterfa
e de�ned in Chapter 5.The JDBCStore uses the
ommuni
ations implementation des
ribed at the
on
lu-sion of the previous
hapter. The JDBCStore
an be a server for a remoteTripleStoreClient. The TripleStoreClient sets up a basi

ommand terminalto a

ess a JDBCStore dire
tly.The JDBCStore
onstru
tor and initialization methods are des
ribed in detail. Wethen dis
uss the me
hanisms by whi
h the triple store transa
tion
ontra
t is upheld.A brief des
ription of URIs follows. We then des
ribe the stru
ture of the databasetables that are used in the underlying database. Next a sample put and get methodare shown as representatives of the JDBCStore implementation of the triple storeabstra
t methods. We
on
lude with a note about the way the JDBCStore module85

www.manaraa.com

shuts down.6.1 Preparing the JDBCStore Module for UseEa
h
on�guration for a JDBCStore instan
e is either set as the argument of a
on-stru
tor or, for the default
onstru
tor, read from the global
on�g utility. The pa-rameters that may be set in
lude the driver name, database URL, name of the sub-database to use, the user name to use to log on to the database, and a middlemanserver port.The driver name identi�es the JDBC driver to use. To use a di�erent vendor'sdatabase, simply indi
ate a di�erent driver to load. This driver must be available tothe Java Virtual Ma
hine in its
lasspath.The database URL is a unique identi�er of the database to whi
h JDBC will
onne
t. A database must be running at that URL.A subdatabase or data blo
k name indi
ates the name of the desired databasepartition to
onne
t to. A subdatabase is appended to the database name to
reate theillusion that multiple JDBCStores
an
onne
t to di�erent databases without requiringadministrative
on�gurations for all of them. We internally append the subdatabasename to the database table names and sequen
e identi�ers. Two JDBCStores usethe same database but have di�erent subdatabases if they have di�erent data blo
knames and therefore deal with a disjoint set of tables and sequen
es. The uriRootdata member is a
on
atenation of the database URL and the subdatabase name thatuniquely identi�es the triple store repository with whi
h we are working.The user name is used to log in to the database. The password is a se
ret de-
rypted from a �le via the Haysta
k se
urity pa
kage. The JDBCStore
onne
ts withthe username and Haysta
k-wide password. The database running at the spe
i�edURL must allow the user name and password to login with the appropriate tablepermissions.Finally, middleman
on�gurations are used to indi
ate whether or not we want aparti
ular JDBCStore to listen on a port for remote
onne
tions. The port may be86

www.manaraa.com

either an argument to the
onstru
tor or read from the
on�g utility defaults.With the newly instantiated triple store, we
an now initialize it for use. Weseparate instantiation and initialization to be
onsistent with the rest of Haysta
k.The former
an be done relatively painlessly while the latter must in some
ases bedone in a parti
ular order to obey dependen
ies between utilities.Initializing the JDBCStore �rst loads in the JDBC driver, and then attempts to
reate a series of database
onne
tions in a
onne
tion pool, des
ribed in Se
tion 6.2,using the
on�gured URL, user name, and password. Conne
tions are
on�gured touse multi-statement transa
tions and the TRANSACTION SERIALIZABLE isola-tion level. TRANSACTION SERIALIZABLE isolation provides the stri
test level ofisolation and helps ensure isolation of data values on disk in a multithreaded appli-
ation. An internal method is then invoked to test for the existen
e of the databasetables and sequen
es with whi
h the
onne
tions will intera
t. If they do not alreadyexist, they are
reated. We
ontinue initialization by expli
itly loading in triple store-spe
i�
 utilities. We then impli
itly load the set of
lasses
on�gured by the
on�gutility defaults. One impli
itly loaded utility is the real triple store
ommand API. Weuse Java re
e
tion to instantiate these
lasses within our module's namespa
e bygiving them the namespa
e key. If our module is
on�gured to allow remote
onne
-tions, we establish a MiddlemanServer
onne
tion to listen for remote
lients on theappropriate port. Finally, we ask our name utility to initialize itself, whi
h initializesall registered utilities.6.2 How Transa
tions WorkThe Conne
tionPool inner
lass manages database
onne
tions for JDBCStore trans-a
tions. A transa
tion is opened by binding a
onne
tion either to the per instan
ethread lo
al variable lo
alCon or to a jdb
Transa
tionHandle for the
lient touse. Internally this binding is
reated when one of the triple store BEGIN TRANS-ACTION methods is invoked. It either hides the transa
tion in the instan
e andthread, or it returns a jdb
Transa
tionHandle to the
lient. The
onne
tion re-87

www.manaraa.com

sour
e that has been seized remains seized until a COMMIT or ABORT is exe
utedon the transa
tion, and then the resour
e is released from the lo
alCon or the asso-
iated jdb
Transa
tionHandle. Releasing the
onne
tion from a transa
tion handleinstan
e renders the handle stale or useless.Internally, the Conne
tionPool manages the binding and releasing of
onne
tionswith a list of free resour
es. The methods GRAB and RELEASE are used to exe
utethese operations, respe
tively. They obtain a lo
k on the
onne
tion pool obje
t whenmanipulating the resour
e lists. The lo
k prevents situations where updates to theresour
e lists would
ollide. Re
all the problems with isolation that
an o

ur in theabsen
e of lo
ks.On
e we have established this way of binding a
tual JDBC
onne
tions in ourtransa
tions, we
an depend on the JDBC driver itself to handle transa
tions. Trans-a
tions are impli
itly open on our JDBC
onne
tions. The Conne
tionPool's GRABand RELEASE methods ensure that no statements were exe
uted a
ross a given
on-ne
tion from the time of the last COMMIT or ABORT on that
onne
tion to the timeof the new binding. We just have to make sure that our JDBCStore COMMIT andABORT methods
all the
onne
tion's COMMIT and ABORT methods, respe
tive-ly, just prior to releasing the resour
e. Transa
tions e�e
tively begin with a BEGINTRANSACTION
all and end with a COMMIT or ABORT
all, as desired.Before any of the basi
 put or get operations are attempted on a parti
ularJDBCStore instan
e, the transa
tion handle is always validated. We validate trans-a
tion handles to verify that the underlying database
onne
tion exists and
an beused to read and write assertions and literals in this instan
e's namespa
e. If themethod is an impli
it transa
tion method, we just validate the instan
e's thread lo
al
onne
tion. A
ertain level of se
urity is enfor
ed on expli
it transa
tion handlesbe
ause the jdb
Transa
tionHandle is a private inner
lass of the JDBCStore, andprivate inner
lasses may not be instantiated externally. Sin
e we return transa
tionhandles outside the JDBCStore we must prote
t against the ability to use invalid han-dles obtained from di�erent instan
es. We
he
k that the transa
tion handle is usingthe same user name to
onne
t to the same database as this JDBCStore instan
e. A88

www.manaraa.com

transa
tion validation error throws a Transa
tionEx
eption.One important feature allows us to use the same jdb
Transa
tionHandle on dis-joint triple store repositories if they
ome from the same database and user name.The JDBCStore namespa
e is a
on
atenation of the a
tual database name and thesubdatabase. The subdatabase just de�nes a disjoint set of tables within the samedatabase. All transa
tion handles from the same database and username have
onne
-tions with identi
al
apabilities even if they have di�erent subdatabases. We providethe ability to use transa
tion handles in this
ase be
ause another Haysta
k resear
hproje
t needs to use multiple JDBCStores with disjoint database tables [8℄.Using transa
tion handles from di�erent JDBCStore instan
es prevents us fromhaving to write a nested transa
tion wrapper to perform a series of subtransa
tionson the JDBCStores. The diÆ
ulty with writing a nested transa
tion is that it mustprovide the ability to abort all of its
ontaining subtransa
tions until the nestedtransa
tion itself
ommits [10℄. The subtransa
tions
an't
ommit at exa
tly thesame time, so transa
tion wrappers must be prepared to undo already
ommittedsubtransa
tions. A nested transa
tion
an only undo a
ommitted subtransa
tion if ithas persistently logged the ability to
ompletely undo the subtransa
tion. Fortunatelywe
an instead rely on the transa
tions provided by a database's JDBC driver.6.3 How URIs WorkURIs are used to uniquely identify resour
es in our JDBCStore's abstra
t model. Lo
alURIs are maintained internally by the JDBCStore, whi
h manages its own URI spa
e.The private inner
lass jdb
URI is required to refer to one of a JDBCStore's lo
alURIs. The only way to get a pointer to a jdb
URI is to somehow obtain it froma JDBCStore method
all. RemoteURIs may be
reated anywhere in the Haysta
kappli
ation.As with transa
tion handles, we again verify all URIs before allowing a JDBCStoreput or get method to
ontinue. We want to ensure that the JDBCStore has generatedall URIs that refer to its lo
al URI namespa
e. Violating this
onstraint
ould break89

www.manaraa.com

our RDF model by allowing
lients to atta
h assertions to a lo
al URI that has notbeen assigned by the JDBCStore. Instead the JDBCStore manages its own lo
al URInamespa
e. A jdb
URI is veri�ed to make sure that it has an identi
al uriRoot. ARemoteURI is veri�ed to make sure that it refers to a resour
e outside the lo
al URInamespa
e.Internally a jdb
URI is just the uriRoot followed by a numeri
 identi�er. Ea
htime a new resour
e is stored in a triple store, it is given a jdb
URI with uniquenumeri
 identi�er
orresponding to the next value of the sequen
e in the database.The value of the next available identi�er is determined persistently from the databaseby the JDBCStore private method nextId.RemoteURIs may be any string that
an identify a resour
e outside of a parti
ularJDBCStore's URI namespa
e. It has a publi

onstru
tor that allows
lients to in-stantiate obje
ts referring to remote URIs. Be
ause the JDBCStore manages its ownlo
al URI namespa
e, a RemoteURI may not start with the uriRoot of the JDBCStorein whi
h it is being stored.6.4 The Database TablesThe JDBCStore implementation uses JDBC
onne
tivity. JDBC supports the SQLstandard for table
reation and the basi
 relational database put and get operationsdes
ribed in Se
tion 2.2.3. Instead of getting into a spe
i�
 des
ription of how ea
hTripleStore method is implemented we just present the database table stru
ture.These database tables are standard for every JDBCStore instan
e. We provide awalkthrough of how these tables
an be used with a sample JDBCStore put and getmethod later in Se
tions 6.5 and 6.6.We have omitted the subdatabase suÆxes of the table names in our dis
ussionof database tables. Two JDBCStore instan
es working on the same database withdi�erent subdatabases will have di�erent table suÆxes.The database table s
hema for the JDBCStore
an be found in Figure 6-1. TheId Sequen
e table is a
tually just a mono
hromati
ally in
reasing sequen
e that is90

www.manaraa.com

used in the
reation of new lo
al URIs for the JDBCStore. The Obje
t Literals tableis used to store the serialization of arbitrary obje
ts to disk. The String Literalstable is used for spe
ial storage of Java Strings. The same publi
 methods use theObje
t Literals and String Literals tables depending on if the literal is an ar-bitrary obje
t or a String. Finally, the RDF Assertions table stores rei�ed RDFtriples.6.4.1 Storing LiteralsThe methods that deal with triple store literals use the Obje
t Literals andString Literals tables. These methods in
lude PUT BITS, GET BITS, and GETLITERAL URI. We are not guaranteed that two arbitrary Java obje
ts with equiva-lent state will serialize to the exa
t same set of bits in our database. To still supportstorage of arbitrary obje
ts, we keep the Obje
t Literals table. However we
reatea spe
ial
ase for
hara
ter string obje
ts, whi
h we store in the String Literalstable. The way we store
hara
ter String obje
ts is to
onvert them to byte stringsand
ompute an MD5 �ngerprint of the entire
hara
ter sequen
e. We store this�ngerprint along with the String literal itself. We
an then retrieve a String literalby sear
hing a
ross the MD5 �ngerprints. This MD5 does not fun
tionally serve as aURI, and is never exposed to the JDBCStore's
lient.Databases di�er in the way they handle binary large obje
ts (BLOBS). For exam-ple, PostgreSQL used an oid to refer to a BLOB [13℄. A database table that storesa BLOB has an oid
olumn that stores a monoti
ally in
reasing internal identi�erfor the BLOB. If we store an identi
al BLOB twi
e it has a di�erent oid ea
h time.In the Obje
t Literals table, we
an use a bits id to SELECT the byte streamserialization of the BLOB. However, we
annot use the serialized BLOB to dire
tlySELECT its key after storing it in the table, sin
e the BLOB's byte stream is di�erentfrom the oid.The Obje
t Literals table is
omprised of a bits id and a the bits
olumn.The bits id for a new literal is obtained from the Id Sequen
e and represents a URIlo
al to the triple store repository. The the bits
olumn stores a binary large obje
t91

www.manaraa.com

Id Sequen
e<
ount>Obje
t Literalsbits id the bits<uri> <oid>String Literalsstring id md5 the literal<uri> <md5> <oid>RDF Assertionsassertion id subje
t predi
ate obje
t<uri> <uri> <uri> <uri>Figure 6-1: The JDBCStore Database Table Stru
ture
representation of the serialized bits. Sin
e databases di�er in the way they handleBLOBS, sear
hing a
ross this
olumn during a GET LITERAL URI
ommand mayfail to return the URI for an equivalent already saved input literal obje
t. The PUTBITS and GET BITS operations behave as expe
ted, as obje
ts may be serialized forstorage and deserialized for later use.The String Literals table has a string id, md5, and the literal obje
t. Asmentioned we use this table for storage and retrieval of String literals. The string id
olumn serves the same purpose as the bits id
olumn of the Obje
t Literals table.It
ontains a new id obtained from the Id Sequen
e at insertion time and is a lo
alURI. The md5
olumn
ontains an MD5 hash of the String literal's
hara
ter sequen
e.This
olumn is used for sear
hing during a GET LITERAL URI
ommand to obtainthe internal URI for a String literal. The PUT BITS and GET BITS operations allowus to store and retrieve the bits for a String literal a

ording to the the literal
olumn. The the literal
olumn saves the String's serialization as a binary largeobje
t that
an later be deserialized to
reate an equivalent String literal obje
t.92

www.manaraa.com

6.4.2 The RDF AssertionsThe JDBCStore's RDF Assertions table stores the des
riptive RDF metadata. EveryRDF assertion takes the form shown in Figure 6-1 and is therefore impli
itly rei�edto give the
lient the ability to atta
h properties to the statement itself. A lo
alRDF assertion in our JDBCStore may
ontain any
ombination of a lo
al or a remotesubje
t, predi
ate, and obje
t.The �rst
olumn is an assertion id that is a lo
al URI to refer to the state-ment stored in that database
olumn. Lo
al URIs for new assertions are obtainedin the same way as for the bits id and string id
olumns of the literals tables byusing the next available id from the Id Sequen
e. Ea
h subje
t, predi
ate, andobje
t
olumn
ontains a lo
al or a remote URI that has passed the JDBCStore'sURI restri
tions.The bulk of the triple store methods read and write to the RDF Assertions meta-data table. As this table �lls up the RDF model in our JDBCStore be
omes very
omplex. We believe that the metadata together with literals will be suÆ
ient tostore the Haysta
k Data Model persistently on disk.6.5 A Sample PutThe available JDBCStore put operations have similar implementations. Here we lookat the putAssertion method in the
ase where a transa
tion is impli
itly open onthe instan
e and thread. This operation takes as input subje
t, predi
ate, andobje
t arguments. They
orrespond to the RDF notions of a (subje
t, predi
ate,obje
t) triple. The e�e
t of the method is to add a new assertion in our triple store.Sin
e many similar methods appear in slightly di�erent
ontexts, we have privatehelper methods to handle the di�erent possibilities. In this
ase we
all the privatemethod putAssertion with the appropriate JDBC
onne
tion obje
t. Sin
e we areusing impli
it transa
tions, the
onne
tion is just retrieved from the thread lo
alvariable lo
alCon. The private method �rst validates that we have a
onne
tion,then validates all of the input URIs. Next we
reate a unique identi�er for the new93

www.manaraa.com

assertion by
alling nextId to obtain an available id from the Id Sequen
e. Weretrieve a prepared statement from the JDBC
onne
tion to insert a row into theRDF Assertions table using a SQL INSERT method. We set the assertion idto be the URI within the lo
al URI namespa
e with the appropriate new numeri
identi�er. The subje
t, predi
ate, and obje
t
olumn values are set to the inputURIs. Any
ombination of lo
al and remote resour
es may be used in an assertion solong as the URIs have passed veri�
ation. Finally we return the jdb
URI for the newassertion id to the environment whi
h
alled the PUT ASSERTION
ommand. Ifanything goes wrong during the
reation and exe
ution of the method, we throw anAbortEx
eption.
6.6 A Sample GetAs an example get operation we will look at the getSubje
t method with an expli
ittransa
tion handle. This method takes in the URI of an assertion and returns itssubje
t URI.First we validate the transa
tion handle, then we retrieve the
onne
tion fromthe transa
tion handle. We then
all the private helper method getAssertionColwith an argument indi
ating that we are interested in the SUBJECT
olumn. Thismethod �rst validates the
onne
tion extra
ted from the transa
tion handle and thenvalidates the assertion URI argument. We
reate a prepared statement to run ourdatabase get operation with the URI input. We use a SQL SELECT statementto ask for the subje
t of the appropriate row in the RDF Assertions table. Thissubje
t may either be a lo
al URI or a remote URI. If the assertion is found, theappropriate jdb
URI or RemoteURI is returned to the
lient. If anything goes wrongduring exe
ution we throw an AbortEx
eption.94

www.manaraa.com

6.7 How The Server or Client Shuts DownA JDBCStore is shut down by
alling its
lose method.
lose �rst
loses the
on-ne
tion pool, whi
h iterates through its
onne
tions and makes several attempts to
lose ea
h of them individually. If multiple threads are using a
onne
tion and that
onne
tion is
losed, there is no way to reopen it. A
lient should not
all the
losemethod unless it wants to
ompletely shut down the module for all threads. The nextstep is to
lose the middleman server if one exists. Finally, the JDBCStore
loses outits namespa
e. We return any error messages en
ountered while
losing resour
es ina TsCloseEx
eption.The remote TripleStoreClient
loses in mu
h the same way. It
loses o� itsmiddleman and
ommand terminal. Finally, it
loses o� its namespa
e. We returnerror messages in an HsCloseEx
eption.

95

www.manaraa.com

96

www.manaraa.com

Chapter 7
Future Investigation
In this
hapter, we present several ideas for future improvements to the triple storeinterfa
e and JDBCStore implementation. We also present ways in whi
h the Haysta
kTrust Model
an be improved.7.1 Use An Alternative Way to Store SerializableObje
tsTwo arbitrary obje
ts with equal internal states
an serialize to di�erent bits in theunderlying database of a JDBCStore be
ause binary large obje
ts are not handled thesame by all databases. Consider the
ase where we want to get the URI for an obje
twith state bits ab
defg. Under the
urrent serialization model the JDBCStore
oulddeserialize every entry in the Obje
t Literals table to
ompare the deserialized ob-je
ts to see if they are equal. Instead, we
urrently
ompare the serialization bits tothe the bits
olumn to �nd the URI for an obje
t literal. The
ost of deserializingthe entire Obje
t Literals table from PostgreSQL oids would be prohibitively ex-pensive. It would be better to allow the database to
he
k the table for the bit stringab
defg dire
tly without re
reating the obje
t. We use an MD5 hash to �ngerprintJava String obje
ts for this type of database sele
tion. A similar te
hnique
ould beintrodu
ed to �ngerprint other literals so that the Obje
t Literals table may be97

www.manaraa.com

sear
hed using MD5 hashes as well.
7.2 Close the Namespa
e ProperlyIn dis
ussing the way namespa
es in the Haysta
k Trust Model are
losed, we overlookone small detail. When a module asks its name utility to
lose, and the name utility inturn
loses everything registered with it, in
luding itself, it does not a
tually removeitself from the Loadables list of existing namespa
es. It would improve modularityif all resour
es within a module were freed, in
luding the pointer to the name utilityitself in the Loadables list.
7.3 Add A Lo
al Triple Store Command LineCurrently the JDBCStore
ommand line only runs remotely. A simple
hange wouldallow the
ommand line to run lo
ally as well. An instan
e of the exa
t same
ommandline
lass
ould be used for lo
al and remote versions sin
e they should fun
tionidenti
ally, ex
ept that when a lo
al
ommand line asks for its
ommand API it getsa real one while a remote
ommand line gets a virtual one. This
hange may be aseasy as adding an instan
e of the already existing haysta
k.ts.CommandLine to theJDBCStore server.
7.4 Add JDBCStore Ca
hesThere are several pla
es where the JDBCStore
ould be more aware of its memoryusage. The bits of a literal
ould be
a
hed, and for really large bit bins, we
ould de-serialize the obje
t itself and store it in a lo
al
a
he. Instead we
urrently deserializeliteral obje
ts every time they are needed.98

www.manaraa.com

7.5 Fix Broken Conne
tionsThe JDBCStore implementation
urrently does not provide any means of repairinga
onne
tion if it breaks. This
ould pose a problem, espe
ially if we keep using
onne
tions and breaking them until we have none left to use. The ability to repairJDBC
onne
tions to a database ba
kend might be a useful improvement.7.6 Prevent Hanging Conne
tionsWhen we try to initialize a JDBC
onne
tion to the ba
kend database, the
onne
tionhangs if it
annot be
reated. If we absolutely need a
onne
tion to that parti
ulardatabase in order to do anything useful, the
urrent situation may be okay. Butthere should probably be some sort of timeout period so that
onne
tion attemptsonly hang for a limited time, after whi
h Haysta
k tries to �nd some other task toperform, or displays errors to the user on exit.7.7 Find Out What An Ex
eption on Commit andAbort MeansThe meaning of a JDBC SQLEx
eption during
ommit or abort would be useful toknow. This meaning
ould a�e
t the triple store interfa
e transa
tion
ontra
t. Fornow it may suÆ
e for a
lient to abort the transa
tion.7.8 Dis
over if Information Sent Along the WireVia JDBC Conne
tions is En
ryptedIt is not
lear whether or not
ommuni
ation between JDBC and the ba
kend databaseserver is en
rypted. If it is, our system probably has an a

eptable se
urity proto
ol.If it is not, we should explore the possible options to in
lude en
ryption. The answer99

www.manaraa.com

to this question may depend on the implementation of the database vendor's JDBCdriver.
7.9 Ensure That the JDBCStore Can Run onDi�erent Ba
kendsWhile part of the reason for using JDBC was that it permits
onne
tions to many dif-ferent database ba
kends, we have only tested the JDBCStore implementation on thePostgreSQL database. There may be statements exe
uted that are database-spe
i�
,and will not work when a JDBCStore
onne
ts to a di�erent database. One anti
-ipated problem area is binary large obje
t storage in
onsisten
ies a
ross databases.It would behove us to test the JDBCStore on di�erent databases. Re
all that thosedatabases would have to be administratively
on�gured for
onne
tivity with theHaysta
k username and password, as dis
ussed in Se
tion 2.2.3.
7.10 Find Out Why the PostreSQL DriverDoesn't Appear to Change Transa
tionIsolation LevelsThere is a spe
i�
 problem observed with the PostgreSQL JDBC driver that we haveused to test our JDBCStore. A

ording to do
umentation, PostgreSQL supports theTRANSACTION SERIALIZABLE JDBC isolation level [27℄. However, the numeri
alvalue for the isolation level of a JDBC
onne
tion to PostgreSQL does not appear to
hange when we
all the appropriate methods to reset the
onne
tion's isolation level.One future improvement to would be to �gure out why this is so. If we dis
over thatthe PostgreSQL driver does not really support this feature, we may have to
hangedatabase ba
kends. 100

www.manaraa.com

7.11 Improve ModularityIn order to improve modularity, those servi
es that
an be de
oupled from the rootserver perhaps should be. We
ould then move all non-root server-dependent servi
esinto the set of utilities that other modules
an use as well. A migration from usingthe name servi
e to a name utility web of trust might also be bene�
ial. Swit
hing to aname utility
ould prote
t servi
es from being a

essed outside the root server module.Fixing any problem with servi
es will likely be very time
onsuming sin
e there areso many servi
es.7.12 Make Haysta
k Use the Triple StoreThe root server will eventually use triple stores instead of the persistent storage it usesnow. This
hange will require de�ning a Haysta
k RDF ontology to ensure we arewriting valid RDF into our triple stores, and then putting the Haysta
k Data Modelobje
ts into triple stores.7.13 Haysta
ks Sharing InformationOn
e Haysta
k has migrated to a triple store, we
an begin thinking about things su
has XML serializations of a user's Haysta
k that another Haysta
k might understand.On
e this has been established, we
an start work on the so
ial aspe
t of sharinginformation repositories between
olleagues.

101

www.manaraa.com

102

www.manaraa.com

Chapter 8
Con
lusions
We present a dynami
 and robust ba
kend solution to the problem of persisten
e inthe Haysta
k proje
t. This ba
kend, if used soundly,
an help ensure that Haysta
kbe
omes a reliable data storage tool.Migrating Haysta
k to use triple stores will raise many data and appli
ation mod-elling issues. Steps must be taken towards de�ning a Haysta
k ontology. That on-tology will allow Haysta
k to better understand the
ontext of its data, simplifyinginterHaysta
k
ollaboration. Haysta
k
an then begin in
orporating foreign RDF in-formation repositories into its knowledge base. An expert system will emerge that
aters to the user so that a personalized Haysta
k sear
h be
omes a more naturalextension of human thought.There were several lessons learned while designing and implementing the triplestore. Any software module that does not have
learly de�ned requirements is toughto develop. It is also diÆ
ult to
reate a ba
kend module that
an be used by anin
exible lega
y system. Creating a ba
kend that
an run inside the lega
y system oron its own also poses a
hallenge. If the ba
kend uses some relatively new te
hnology,su
h as RDF, designing a storage module is diÆ
ult sin
e few systems already existthat use that te
hnology. Using in
orre
tly do
umented third-party systems
an alsobe an arduous task.We hope that the problems solved and lessons learned by this thesis will improvethe Haysta
k proje
t. The triple store meets the ne
essary requirements, but only103

www.manaraa.com

with future Haysta
k improvements will it be
ome useful. A Haysta
k using thetriple store interfa
e should be more robust than one using the existing persisten
elayer. Using the
exible and uniform triple store should make Haysta
k metadatamore easily understandable and therefore more useful.

104

www.manaraa.com

Appendix A
RDF Formal Grammar
This is the formal RDF grammar. Table A is taken from [26℄ from Se
tion 6. It isin
luded here for referen
e. The reader is en
ouraged to read the des
riptions at thesour
e for
lari�
ation.
[6.1℄ RDF ::= ['<rdf:RDF>'℄ obj* ['</rdf:RDF>'℄[6.2℄ obj ::= des
ription j
ontainer[6.3℄ des
ription ::= '<rdf:Des
ription' idAboutAttr? bagIdAttr? propAttr* '/>'j '<rdf:Des
ription' idAboutAttr? bagIdAttr? propAttr* '>'propertyElt* '</rdf:Des
ription>'j typedNode[6.4℄
ontainer ::= sequen
e j bag j alternative[6.5℄ idAboutAttr ::= idAttr j aboutAttr j aboutEa
hAttr[6.6℄ idAttr ::= ' ID="' IDsymbol '"'[6.7℄ aboutAttr ::= ' about="' URI-referen
e '"'[6.8℄ aboutEa
hAttr ::= ' aboutEa
h="' URI-referen
e '"'j ' aboutEa
hPre�x="' string '"'[6.9℄ bagIdAttr ::= ' bagID="' IDsymbol '"'[6.10℄ propAttr ::= typeAttrj propName '="' string '"' (with embedded quotes es
aped)105

www.manaraa.com

[6.11℄ typeAttr ::= ' type="' URI-referen
e '"'[6.12℄ propertyElt ::= '<' propName idAttr? '>' value '</' propName '>'j '<' propName idAttr? parseLiteral '>'literal '</' propName '>'j '<' propName idAttr? parseResour
e '>'propertyElt* '</' propName '>'j '<' propName idRefAttr? bagIdAttr? propAttr* '/>'[6.13℄ typedNode ::= '<' typeName idAboutAttr? bagIdAttr? propAttr* '/>'j '<' typeName idAboutAttr? bagIdAttr? propAttr* '>'propertyElt* '</' typeName '>'[6.14℄ propName ::= Qname[6.15℄ typeName ::= Qname[6.16℄ idRefAttr ::= idAttr j resour
eAttr[6.17℄ value ::= obj j string[6.18℄ resour
eAttr ::= ' resour
e="' URI-referen
e '"'[6.19℄ Qname ::= [NSpre�x ':' ℄ name[6.20℄ URI-referen
e ::= string, interpreted per [URI℄[6.21℄ IDsymbol ::= (any legal XML name symbol)[6.22℄ name ::= (any legal XML name symbol)[6.23℄ NSpre�x ::= (any legal XML namespa
e pre�x)[6.24℄ string ::= (any XML text, with "<", ">", and "&" es
aped)[6.25℄ sequen
e ::= '<rdf:Seq' idAttr? '>' member* '</rdf:Seq>'j '<rdf:Seq' idAttr? memberAttr* '/>'[6.26℄ bag ::= '<rdf:Bag' idAttr? '>' member* '</rdf:Bag>'j '<rdf:Bag' idAttr? memberAttr* '/>'[6.27℄ alternative ::= '<rdf:Alt' idAttr? '>' member+ '</rdf:Alt>'j '<rdf:Alt' idAttr? memberAttr? '/>'[6.28℄ member ::= referen
edItem j inlineItem[6.29℄ referen
edItem ::= '<rdf:li' resour
eAttr '/>'[6.30℄ inlineItem ::= '<rdf:li' '>' value </rdf:li>'j '<rdf:li' parseLiteral '>' literal </rdf:li>'106

www.manaraa.com

j '<rdf:li' parseResour
e '>' propertyElt* </rdf:li>'[6.31℄ memberAttr ::= ' rdf: n="' string '"' (where n is an integer)[6.32℄ parseLiteral ::= ' parseType="Literal"'[6.33℄ parseResour
e ::= ' parseType="Resour
e"'[6.34℄ literal ::= (any well-formed XML)Figure A: Formal Grammar for RDF

107

www.manaraa.com

108

www.manaraa.com

Appendix B
RDF S
hema
Here is a
opy of the XML serialization of the RDF s
hema [15℄ that may help inunderstanding the RDF type system. The namespa
e URI for the RDF S
hemaSpe
i�
ation will
hange in future versions of this spe
i�
ation if the s
hema
hanges.This RDF s
hema in
ludes annotations des
ribing RDF resour
es de�ned formallyin the RDF Model and Syntax spe
i�
ation, as well as de�nitions for new resour
esbelonging to the RDF S
hema namespa
e.
<rdf:RDFxmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"xmlns:rdfs="http://www.w3.org/2000/01/rdf-s
hema#"><rdfs:Class rdf:ID="Resour
e"><rdfs:label xml:lang="en">Resour
e</rdfs:label><rdfs:label xml:lang="fr">Ressour
e</rdfs:label><rdfs:
omment>The most general
lass</rdfs:
omment></rdfs:Class>

Figure B-1: An XML Serialization of the RDF S
hema 1.0
109

www.manaraa.com

<rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><rdfs:label xml:lang="en">type</rdfs:label><rdfs:label xml:lang="fr">type</rdfs:label><rdfs:
omment>Indi
ates membership of a
lass</rdfs:
omment><rdfs:range rdf:resour
e="#Class"/></rdf:Property><rdf:Property ID="
omment"><rdfs:label xml:lang="en">
omment</rdfs:label><rdfs:label xml:lang="fr">
ommentaire</rdfs:label><rdfs:domain rdf:resour
e="#Resour
e"/><rdfs:
omment>Use this for des
riptions</rdfs:
omment><rdfs:range rdf:resour
e="#Literal"/></rdf:Property><rdf:Property ID="label"><rdf:type resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:label xml:lang="en">label</rdfs:label><rdfs:label xml:lang="fr">label</rdfs:label><rdfs:domain rdf:resour
e="#Resour
e"/><rdfs:
omment>Provides a human-readable version of a resour
ename.</rdfs:
omment><rdfs:range rdf:resour
e="#Literal"/></rdf:Property><rdfs:Class rdf:ID="Class"><rdfs:label xml:lang="en">Class</rdfs:label><rdfs:label xml:lang="fr">Classe</rdfs:label><rdfs:
omment>The
on
ept of Class</rdfs:
omment><rdfs:subClassOf rdf:resour
e="#Resour
e"/></rdfs:Class><rdf:Property ID="subClassOf"><rdfs:label xml:lang="en">subClassOf</rdfs:label><rdfs:label xml:lang="fr">sousClasseDe</rdfs:label><rdfs:
omment>Indi
ates membership of a
lass</rdfs:
omment><rdfs:range rdf:resour
e="#Class"/><rdfs:domain rdf:resour
e="#Class"/></rdf:Property>Figure B-1: An XML Serialization of the RDF S
hema 1.0
110

www.manaraa.com

<rdf:Property ID="subPropertyOf"><rdfs:label xml:lang="en">subPropertyOf</rdfs:label><rdfs:label xml:lang="fr">sousPropritDe</rdfs:label><rdfs:
omment>Indi
ates spe
ialization of properties</rdfs:
omment><rdfs:range rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:domain rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdf:Property><rdf:Property ID="seeAlso"><rdfs:label xml:lang="en">seeAlso</rdfs:label><rdfs:label xml:lang="fr">voirAussi</rdfs:label><rdfs:
omment>Indi
ates a resour
e that provides information about the subje
tresour
e.</rdfs:
omment><rdfs:range rdf:resour
e="http://www.w3.org/2000/01/rdf-s
hema#Resour
e"/><rdfs:domain rdf:resour
e="http://www.w3.org/2000/01/rdf-s
hema#Resour
e"/></rdf:Property><rdf:Property ID="isDe�nedBy"><rdf:type resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:subPropertyOf rdf:resour
e="#seeAlso"/><rdfs:label xml:lang="en">isDe�nedBy</rdfs:label><rdfs:label xml:lang="fr">esD�niPar</rdfs:label><rdfs:
omment>Indi
ates a resour
e
ontaining and de�ning the subje
tresour
e.</rdfs:
omment><rdfs:range rdf:resour
e="http://www.w3.org/2000/01/rdf-s
hema#Resour
e"/><rdfs:domain rdf:resour
e="http://www.w3.org/2000/01/rdf-s
hema#Resour
e"/></rdf:Property><rdfs:Class rdf:ID="ConstraintResour
e"><rdfs:label xml:lang="en">ConstraintResour
e</rdfs:label><rdfs:label xml:lang="fr">Ressour
eContrainte</rdfs:label><rdf:type resour
e="#Class"/><rdfs:subClassOf rdf:resour
e="#Resour
e"/><rdfs:
omment>Resour
es used to express RDF S
hema
onstraints.</rdfs:
omment></rdfs:Class>Figure B-1: An XML Serialization of the RDF S
hema 1.0
111

www.manaraa.com

<rdfs:Class rdf:ID="ConstraintProperty"><rdfs:label xml:lang="en">ConstraintProperty</rdfs:label><rdfs:label xml:lang="fr">PropritContrainte</rdfs:label><rdfs:subClassOf rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:subClassOf rdf:resour
e="#ConstraintResour
e"/><rdfs:
omment>Properties used to express RDF S
hema
onstraints.</rdfs:
omment></rdfs:Class><rdfs:ConstraintProperty rdf:ID="domain"><rdfs:label xml:lang="en">domain</rdfs:label><rdfs:label xml:lang="fr">domaine</rdfs:label><rdfs:
omment>This is how we asso
iate a
lass withproperties that its instan
es
an have</rdfs:
omment></rdfs:ConstraintProperty><rdfs:ConstraintProperty rdf:ID="range"><rdfs:label xml:lang="en">range</rdfs:label><rdfs:label xml:lang="fr">tendue</rdfs:label><rdfs:
omment>Properties that
an be used in as
hema to provide
onstraints</rdfs:
omment><rdfs:range rdf:resour
e="#Class"/><rdfs:domain rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdfs:ConstraintProperty><rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"><rdfs:label xml:lang="en">Property</rdfs:label><rdfs:label xml:lang="fr">Proprit</rdfs:label><rdfs:
omment>The
on
ept of a property.</rdfs:
omment><rdfs:subClassOf rdf:resour
e="#Resour
e"/></rdfs:Class><rdfs:Class rdf:ID="Literal"><rdfs:label xml:lang="en">Literal</rdfs:label><rdfs:label xml:lang="fr">Littral</rdfs:label><rdf:type resour
e="#Class"/><rdfs:
omment>This represents the set of atomi
 values, eg. textualstrings.</rdfs:
omment></rdfs:Class>Figure B-1: An XML Serialization of the RDF S
hema 1.0112

www.manaraa.com

<rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"><rdfs:label xml:lang="en">Statement</rdfs:label><rdfs:label xml:lang="fr">D
laration</rdfs:label><rdfs:subClassOf rdf:resour
e="#Resour
e"/><rdfs:
omment>This represents the set of rei�ed statements.</rdfs:
omment></rdfs:Class><rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#subje
t"><rdfs:label xml:lang="en">subje
t</rdfs:label><rdfs:label xml:lang="fr">sujet</rdfs:label><rdfs:domain rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/><rdfs:range rdf:resour
e="#Resour
e"/></rdf:Property><rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#predi
ate"><rdfs:label xml:lang="en">predi
ate</rdfs:label><rdfs:label xml:lang="fr">prdi
at</rdfs:label><rdf:type resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:domain rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/><rdfs:range rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdf:Property><rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#obje
t"><rdfs:label xml:lang="en">obje
t</rdfs:label><rdfs:label xml:lang="fr">objet</rdfs:label><rdfs:domain rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/></rdf:Property><rdfs:Class rdf:ID="Container"><rdfs:label xml:lang="en">Container</rdfs:label><rdfs:label xml:lang="fr">Enveloppe</rdfs:label><rdfs:subClassOf rdf:resour
e="#Resour
e"/><rdfs:
omment>This represents the set Containers.</rdfs:
omment></rdfs:Class>Figure B-1: An XML Serialization of the RDF S
hema 1.0
113

www.manaraa.com

<rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"><rdfs:label xml:lang="en">Bag</rdfs:label><rdfs:label xml:lang="fr">Ensemble</rdfs:label><rdfs:subClassOf rdf:resour
e="#Container"/></rdfs:Class><rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"><rdfs:label xml:lang="en">Sequen
e</rdfs:label><rdfs:label xml:lang="fr">Squen
e</rdfs:label><rdfs:subClassOf rdf:resour
e="#Container"/></rdfs:Class><rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt"><rdfs:label xml:lang="en">Alt</rdfs:label><rdfs:label xml:lang="fr">Choix</rdfs:label><rdfs:subClassOf rdf:resour
e="#Container"/></rdfs:Class><rdfs:Class rdf:ID="ContainerMembershipProperty"><rdfs:label xml:lang="en">ContainerMembershipProperty</rdfs:label><rdfs:subClassOf rdf:resour
e="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdfs:Class><rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#value"><rdfs:label xml:lang="en">obje
t</rdfs:label><rdfs:label xml:lang="fr">value</rdfs:label></rdf:Property></rdf:RDF>Figure B-1: An XML Serialization of the RDF S
hema 1.0
114

www.manaraa.com

Appendix C
Glossary of Haysta
k Terminology

� AbortEx
eption: Part of the triple store pa
kage, an AbortEx
eption indi-
ates some problem exe
uting a method on the underlying database as part ofa transa
tion. The usual
ourse of a
tion will be for the triple store to abortthe transa
tion.� ar
hive
ommand: The
ommand that stores new information into a user'sHaysta
k. Ar
hiving is the pro
esses of re
ording new do
uments or otherresour
es for later retrieval.� ba
kup servi
e: A servi
e that takes a periodi
 snapshot of a user's Haysta
k.The intent is that a user
an revert to an old snapshot if his or her Haysta
kbe
omes
orrupted.� bale: A bale is a spe
ial type of straw that represents a
olle
tion of straws.We
an add metadata to the entire
olle
tion by atta
hing straws to a bale.�
ommand API: The interfa
e for registering and invoking
ommands for amodule. The
ommand API ar
hite
ture is used in both the root server andthe triple store modules.�
ommand line: A text-based user interfa
e that parses inputs from a terminaland outputs results therein. Command lines exist for both the root server andtriple store modules. 115

www.manaraa.com

�
on�g servi
e: The servi
e that manages
on�gurations for use in the rootserver.�
on�g utility: The utility that manages global
on�gurations that are intendedto serve as defaults for instantiation of new modules. The
on�g utility is
urrently identi
al to the
on�g servi
e ex
ept that it
an run outside the rootserver. A global
on�g utility is
urrently essential before
reating and runninga triple store.�
ore servi
es: Those servi
es in the root server that other servi
es may dependon. The assumption is that every servi
e
an use any of the
ore servi
es.� Haysta
k Data Model (HDM): The fundamental data obje
ts used by theHaysta
k IR tool.� Haysta
k Servi
e Model (HSM): The model of dynami
ally loadable ser-vi
es running around within Haysta
k to perform di�erent tasks.� Haysta
k Trust Model (HTM): An enhan
ement to the Haysta
k Servi
eModel that introdu
es the
on
ept of utilities. Fo
us within the HTM is onmaintaining modularity and reusability of
ode.� Haysta
kID: An identi�er that refers to any straw in the Haysta
k Data Model.� HsServi
e: The Java
lass at the root of the servi
e hierar
hy. An HsServi
eis a servi
e that
an be referred to via a semanti
 servi
e name des
ription.� JDBCStore: The Java implementation of the triple store module. A JDBC-Store
onne
ts to a database via the Java DataBase Conne
tivity API.� kernel: A module whi
h limits a

ess to
riti
al data within the Haysta
kIR tool. Examples of
riti
al data are Haysta
k Data Model elements andtransa
tion handles for modi�
ation of disk data. Transa
tions are
urrentlyturned o� in the kernel. A modi�
ation of the kernel may be used in the future116

www.manaraa.com

to restri
t a

ess to the triple store and its transa
tion handles. The root server
urrently prote
ts important data and pointers using this module.� Middleman: The
lient for one form of remote
ommuni
ation in Haysta
k.It uses se
urity obje
ts to authenti
ate and en
rypt a dialogue with a Middle-manServer. A Middleman
an be either a servi
e if
reated by the root serveror a utility if
reated by the triple store.� MiddlemanServer: The server for one form of remote
ommuni
ation inHaysta
k. It uses se
urity obje
ts to authenti
ate and en
rypt dialogues withany Middlemen that
onne
t to it. A MiddlemanServer
an be either a servi
eif
reated by the root server or a utility if
reated by the triple store.� name servi
e: The servi
e that other servi
es use to initialize interservi
e
ommuni
ation. The name servi
e
an be used to dynami
ally register andload servi
es. It allows servi
es to talk to ea
h other via semanti
 servi
e namedes
riptions. The name servi
e also stores information about the servi
es loadedinto it persistently on disk. The name servi
e is the root server's namespa
e. Itmay be a

essed from anywhere in the Haysta
k pro
ess.� name utility: The utility that other utilities use to initialize interutility
om-muni
ation. The name utility
an be used to dynami
ally register and loadutilities. A name utility is a web of trust that privileged utilities
an use to talkto ea
h other via semanti
 utility name des
riptions. The name utility is anarbitrary module's namespa
e. The global name utility may be a

essed fromanywhere in the Haysta
k pro
ess, but a module-spe
i�
 name utility
an onlybe a

essed by privileged utilities.� NamedUtility: The Java
lass at the root of the utility hierar
hy. A namedutility is a utility that
an be referred to via a semanti
 utility name des
ription.� needle: A needle is a spe
ial type of straw that
ontains unpro
essed data or
olle
tions of bits. The text of a do
ument
ould
onstitute one kind of needle.117

www.manaraa.com

� persistent hashtable: The existing persistent interfa
e to disk that the rootserver uses to store its data model. A persistent hashtable stores (key, value)pairs.� query servi
e: A servi
e that pro
esses queries and attempts to generatesuitable result sets.� real: Belonging to the server side. Typi
ally real servi
es or utilities performthe a
tual work that virtual
ounterparts request.� root server: The Information Retrieval module of the Haysta
k proje
t. Even-tually we anti
ipate that the root server will use the triple store as a persistentinterfa
e to store its data model.� servi
e: An entity that runs in the root server to aid in some InformationRetrieval purpose. Servi
es
an run only in the root server. Their instan
es arerestri
ted by uniqueness within a Haysta
k pro
ess.� servi
e name: The semanti
 des
ription of a servi
e. Currently
omprisedonly of
hara
ter strings, we anti
iapte other des
riptions in the future.� straw: A straw is the root of the Haysta
k Data Model hierar
hy. All datamodel obje
ts are straws. A straw has a unique Haysta
kID that refers to it.� tie: A tie is a spe
ial type of straw that forms a labelled, dire
ted edge fromone straw to another. Ties are the basi
 relational entities in the Haysta
k DataModel and together with the obje
ts they
onne
t
onstitute an assertion.� Transa
tionEx
eption: An ex
eption whi
h indi
ates an attempt to use aninvalid handle or the absen
e of a transa
tion for the spe
i�ed thread and in-stan
e of a triple store.� Transa
tionHandle: The Java interfa
e that refers to a transa
tion handle toa triple store. A transa
tion handle may be used to make a series of a
tions onthe triple store appear as though they were one atomi
 a
tion.118

www.manaraa.com

� triple store: A module whi
h stores information on disk in the form of or-dered triples while o�ering a transa
tion
ontra
t that
an provide persisten
eif properly used. Ea
h triple is
alled an assertion.� TripleStore: The Java interfa
e to the triple store module.� TripleStoreClient: The Java implementation of the remote triple store
lient.Currently the remote
lient
an just
onne
t and run simple
ommands on theserver side.� URI: The Java interfa
e that refers to a resour
e in the triple store. Weuse URIs to refer to resour
es in the triple store in mu
h the same way thatHaysta
kIDs are used in the Haysta
k Data Model.� utility: An entity whi
h
an have many instan
es running in di�erent modules
on
urrently. Compare to the notion of a servi
e.� utility name: A semanti
 des
ription of a utility. Currently
omprised onlyof
hara
ter strings, we anti
ipate other des
riptions in the future. Similar to aservi
e name ex
ept
reated for use in a name utility.� virtual: Belonging to the
lient side. Typi
ally virtual servi
es or utilities willhave a real
ounterpart to whom the a
tual work is relayed.

119

www.manaraa.com

120

www.manaraa.com

Bibliography
[1℄ Harold Abelson and Gerald Jay Sussman with Julie Sussman. Stru
ture andInterpretation of Computer Programs, se
tion 3.2, pages 236{251. The MITPress with The M
Graw-Hill Companies, In
., Cambridge, MA, se
ond edition,1996.[2℄ Eytan Adar. Hybrid-sear
h and storage of semi-stru
tured information. Master'sthesis, Massa
husetts Institute of Te
hnology, Department of Ele
tri
al Engineer-ing and Computer S
ien
e, May 1998.[3℄ Mark Asdoorian. Data manipulation servi
es in the haysta
k ir system. Master'sthesis, Massa
husetts Institute of Te
hnology, Department of Ele
tri
al Engineer-ing and Computer S
ien
e, May 1998.[4℄ Krishna Bharat. Sear
hpad: Expli
it
apture of sear
h
ontext to support websear
h. http://www9.org/w9
drom/173/173.html.[5℄ Bert Boss. Xml in 10 points. Te
hni
al report, W3C,http://www.w3.org/XML/1999/XML-in-10-points, Mar
h 1999.[6℄ J. Budzik and K. J. Hammond. User intera
tions with everyday appli
ations as
ontext for just-in-time information a

ess. Pro
eedings of the 2000 InternationalConferen
e on Intelligent User Interfa
es, 2000.[7℄ Ora
le Corporation. Ora
le8 server sql referen
e, release 8.0.http://www.orado
.
om/ora8do
/DOC/server803/A54647 01/to
.htm.121

www.manaraa.com

[8℄ Domini
 D'Aleo. A versioning layer for haysta
k. Master's thesis proposal,Massa
husetts Institute of Te
hnology, Department of Ele
tri
al Engineering andComputer S
ien
e, February 2001.[9℄ David Flanagan. Java in a Nutshell. The Java Series. O'Reilly & Asso
iates,In
., Sebastopol, CA, third edition, November 1999.[10℄ Jim Gray and Andreas Reuter. Transa
tion Pro
essing: Con
epts and Te
h-niques. The Morgan Kaufmann Series in Data Management. Morgan KaufmanPublishers, In
., San Fran
is
o, CA, 1993.[11℄ Philip Greenspun. Sql for web nerds. http://photo.net/sql/.[12℄ Philip Greenspun. Philip and Alex's Guide to Web Publishing,
hapter 12, pages325{364. Morgan Kaufmann Publishers, In
., San Fran
is
o, CA, 1999.[13℄ The PostgreSQL Global Development Group. Postgresql. An open-sour
e proje
twith links to mirrors found at http://www.postgresql.org/ and a U.S. WWWmirror at http://postgresql.readysetnet.
om/.[14℄ W3C Consortioum XML Working Group, Spe
ial Interest Group, andW3C Metadata A
tivity. Namespa
es in xml. Te
hni
al report, W3C,http://www.w3.org/TR/1999/REC-xml-names-19990114, January 1999.[15℄ W3C RDF S
hema Working Group. Resour
e des
ription frame-work (rdf) s
hema spe
i�
ation 1.0. Te
hni
al report, W3C,http://www.w3.org/TR/2000/CR-rdf-s
hema-20000327, Mar
h 2000.[16℄ W3C XML Core Working Group. Extensible markup language (xml) 1.0 (se
-ond edition). Te
hni
al report, W3C, http://www.w3.org/TR/2000/REC-xml-20001006, O
tober 2000.[17℄ Marti A. Hearst. Next generation web sear
h: Setting our sites. Bulletin ofthe IEEE Computer So
iety Te
hni
al Committee on Data Engineering, 2000.http://www.resear
h.mi
rosoft.
om/resear
h/db/debull/A00sept/hearst.ps.122

www.manaraa.com

[18℄ INT Media Group In
orporated. Ftp - webopedia de�nition and links.http://www.p
webopedia.
om/TERM/F/FTP.html.[19℄ Daniel D. Lee and Sebastian Seung. Learning the parts of obje
ts by non-negativematrix fa
torization. Nature, 401:788{791, O
tober 1999.[20℄ Christopher Lo
ke. A

elerating toward a better sear
h engine. Red Herring,Mar
h 2001. http://www.herring.
om/index.asp?layout=story&
hannel=10000001&do
 id=1450018145.[21℄ Aidan Low. A folder-based implementation of a graphi
al interfa
e to an infor-mation retrieval system. Master's thesis, Massa
husetts Institute of Te
hnology,Department of Ele
tri
al Engineering and Computer S
ien
e, May 1999.[22℄ et al. Lynn Andrea Stein. Annotated daml ontology markup. Te
hni
al report,DAML, http://www.daml.org/2000/10/daml-walkthru, O
tober 2000.[23℄ Kenneth D. M
Cra
ken. Dynami
 and robust data storage and retrieval in thehaysta
k system. Master's thesis proposal, Massa
husetts Institute of Te
hnolo-gy, Department of Ele
tri
al Engineering and Computer S
ien
e, May 2000.[24℄ M. J. M
Gill and G. Salton. Introdu
tion to Modern Information Retrieval.M
Graw-Hill, New York, NY, 1983.[25℄ Sun Mi
rosystems. Jdb
 data a

ess api.http://java.sun.
om/produ
ts/jdb
/index.html.[26℄ W3C RDF Model and Syntax Working Group. Resour
e des
riptionframework (rdf) model and syntax spe
i�
ation. Te
hni
al report, W3C,http://www.w3.org/TR/1999/REC-rdf-syntax-19990222, February 1999.[27℄ Peter T Mount. Postgresql jdb
 driver. An open-sour
e proje
t athttp://jdb
.postgresql.org/. 123

www.manaraa.com

[28℄ MIT Department of Ele
tri
al Engineering and Computer S
ien
e. 6.033 draftof
hapter eight: Atomi
ity, April 1999. M. Frans Kaashoek taught the
ourseduring the term these notes were distributed.[29℄ George Reese. Database Programming with JDBC(TM) and Java(TM). TheJava(TM) Series. O-Reilly and Asso
iates, In
., Sebastopol, CA, se
ond edition,August 2000. JDBC and Java are trademarks of Sun Mi
rosystems, In
.[30℄ Mi
hael Stonebraker. Obje
t-relational dbms - the next wave.http://db.
s.berkeley.edu/papers/Informix/www.informix.
om/informix/
orpinfo/zines/whitpprs/illuswp/wave.htm.[31℄ Danny Sullivan. Being sear
h boxed to death. The Sear
h Engine Report, Mar
h2001. http://sear
henginewat
h.
om/sereport/01/03-boxed.html.[32℄ In
. Sun Mi
rosystems. Java 2 platform, standard edition.http://java.sun.
om/produ
ts/jdk/1.2/do
s/api/java/sql/pa
kage-summary.html.[33℄ In
. Sun Mi
rosystems. The java tutorial.http://java.sun.
om/do
s/books/tutorial/.[34℄ Jaime B. Teevan. Improving information retrieval with textual analysis: Bayesianmodels and beyond. Master's thesis, Massa
husetts Institute of Te
hnology,Department of Ele
tri
al Engineering and Computer S
ien
e, May 2001.[35℄ Dallan Quass William Cohen, Andrew M
Callum. Learn-ing to understand the web. Bulletin of the IEEE Comput-er So
iety Te
hni
al Committee on Data Engineering, 2000.http://www.resear
h.mi
rosoft.
om/resar
h/db/debull/A00sept/
ohen.ps.
124

