
www.manaraa.com

Flexible and Robust Data Storage and Retrieval inthe Haystak SystembyKenneth D. MCrakenSubmitted to the Department of Eletrial Engineering and ComputerSienein partial ful�llment of the requirements for the degree ofMaster of Engineering in Eletrial Engineering and Computer Sieneat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYSeptember 2001 Massahusetts Institute of Tehnology, MMI. All rights reserved.
Author .Department of Eletrial Engineering and Computer SieneJune 11, 2001Certi�ed by. .David KargerAssoiate ProfessorThesis SupervisorCerti�ed by. .Lynn Andrea SteinAssoiate ProfessorThesis SupervisorAepted by .Arthur C. SmithChairman, Department Committee on Graduate Students

www.manaraa.com

2

www.manaraa.com

Flexible and Robust Data Storage and Retrieval in theHaystak SystembyKenneth D. MCrakenSubmitted to the Department of Eletrial Engineering and Computer Sieneon June 11, 2001, in partial ful�llment of therequirements for the degree ofMaster of Engineering in Eletrial Engineering and Computer SieneAbstratIn this thesis we reate a new bakend to the Haystak information retrieval projet.We all this exible and robust module the triple store.Haystak brings the power of personalized searh into the hands of the user. Iturrently uses another data storage bakend, but will eventually use the triple storeinstead. Several problems were faed while designing the new module. Many weredue to the inexibility of existing Haystak modules. We have reated a new HaystakTrust Model that makes some legay Haystak ode more exible.The interfae to the triple store allows data and metadata to be saved as labelled,direted binary relations. We hope that the interfae is exible enough to eventuallysave the Haystak Data Model, and robust enough to eventually make Haystakmore dependable. The JDBCStore implementation of the interfae onnets to aninterhangeable third-party database. It manages the more ompliated robustnessapabilities provided by the third-party database rather than handling robustnessfrom srath. One Haystak swithes to the JDBCStore bakend, we will have amore dependable IR tool on whih to develop other interesting researh.Thesis Supervisor: David KargerTitle: Assoiate ProfessorThesis Supervisor: Lynn Andrea SteinTitle: Assoiate Professor
3

www.manaraa.com

4

www.manaraa.com

AknowledgmentsI would like to thank my thesis advisors, David Karger and Lynn Stein, for exposingme to the intriguing tehnologies related to the Haystak projet. I would also liketo thank my family, Dad, Mom, Sott and Ali, for helping me meet the hallengesof MIT over the last several years. I would also like to aknowledge the people whobrought me sanity and good times in the midst of all the pressure, inluding butertainly not limited to the East Cambridge gang and the MIT swim team. Andthanks to Joel Rosenberg for taking the time to help me with my writing.

5

www.manaraa.com

6

www.manaraa.com

Contents
1 Introdution 131.1 The Problem . 141.2 Overview . 172 Bakground 192.1 The State of Searh . 192.1.1 A Bird's Eye View of Information Retrieval 202.1.2 Catering to the User . 212.1.3 Context-Aware Searh . 222.2 Using Transations to Ahieve Robustness 232.2.1 The ACID Properties . 232.2.2 Enforing Isolation While Using Transations 252.2.3 JDBC: A Transational API 292.3 Getting Haystak to Understand . 342.3.1 An Introdution to RDF . 352.3.2 RDF Basis . 362.3.3 An RDF Example . 372.3.4 Adding Sope to RDF Resoures 392.3.5 The RDF Type Hierarhy . 413 The Haystak Personalized IR Tool 433.1 What Haystak Does . 443.2 Haystak Goals . 447

www.manaraa.com

3.3 Haystak: The User Perspetive . 453.4 The Haystak Data Model . 463.4.1 Straws . 463.4.2 Ties . 473.4.3 Needles . 473.4.4 Bales . 483.4.5 Navigating the Model . 493.5 The Haystak Servie Model . 493.5.1 HsServie . 513.5.2 Core Servies . 513.5.3 Data Model Servies . 553.5.4 The Communiations Module 553.6 Persistent Storage: The Old Way . 594 The Haystak Trust Model 614.1 A New Distintion: Utilities vs. Servies 624.2 Haystak Without a Root Server? . 634.2.1 The Con�g Utility is Essential (sort of) 664.2.2 Other Essential Utilities . 664.3 A Per-Module Namespae Utility . 664.3.1 A Namespae Example . 674.3.2 Who Controls a Namespae? 674.3.3 The Namespae De�nes a Web of Trust 684.3.4 Dynami Inlusion in a Namespae 704.3.5 Cleaning Up a Namespae . 704.3.6 When is a New Namespae Neessary? 704.4 A More Modular Haystak . 714.5 Adding A New Module . 725 The TripleStore Interfae 755.1 The Transation Contrat . 768

www.manaraa.com

5.2 A Flexible Graph for Haystak . 785.3 The TripleStore Interfae . 795.4 A Better Understanding Through RDF Triple Stores 815.4.1 A Uniform API for Storing RDF Models 815.4.2 Rei�ed Statements . 835.5 Using the TripleStore . 835.5.1 Diretly Through Java . 835.5.2 Remotely via Middlemen . 846 Implementating the TripleStore 856.1 Preparing the JDBCStore Module for Use 866.2 How Transations Work . 876.3 How URIs Work . 896.4 The Database Tables . 906.4.1 Storing Literals . 916.4.2 The RDF Assertions . 936.5 A Sample Put . 936.6 A Sample Get . 946.7 How The Server or Client Shuts Down 957 Future Investigation 977.1 Use An Alternative Way to Store Serializable Objets 977.2 Close the Namespae Properly . 987.3 Add A Loal Triple Store Command Line 987.4 Add JDBCStore Cahes . 987.5 Fix Broken Connetions . 997.6 Prevent Hanging Connetions . 997.7 Find Out What An Exeption on Commit and Abort Means 997.8 Disover if Information Sent Along the Wire Via JDBC Connetionsis Enrypted . 999

www.manaraa.com

7.9 Ensure That the JDBCStore Can Run onDi�erent Bakends . 1007.10 Find Out Why the PostreSQL DriverDoesn't Appear to Change TransationIsolation Levels . 1007.11 Improve Modularity . 1017.12 Make Haystak Use the Triple Store 1017.13 Haystaks Sharing Information . 1018 Conlusions 103A RDF Formal Grammar 105B RDF Shema 109C Glossary of Haystak Terminology 115

10

www.manaraa.com

List of Figures
2-1 The depositpay and paybill proedures 252-2 The ations of the depositpay transation 262-3 Sequene of parallel ations violating the isolation onstraint 272-4 Loking in the depositpay-isolated and paybill-isolated transations . . 272-5 A Sample SQL Table . 302-6 A Simple RDF Model . 372-7 An RDF Model for a Rei�ed Statement 382-8 An RDF Model for a Statement About a Statement 392-9 An RDF Model With Namespaes Identi�ed 402-10 The Prinipal Resoures of the RDF Type Hierarhy 423-1 Similarities between the HDM and RDF 463-2 The HDM for \owers have petals." 503-3 Servies Communiate via Semanti Desriptions 543-4 A User Requests Arhiving of the URL \http://web.mit.edu/". 584-1 The Relationship Between Servies and Utilities 624-2 The New Haystak Model . 644-3 A Sample Module Controls its Namespae 694-4 The Namespae View of the World 715-1 The Triple Store Abstrat Method List 796-1 The JDBCStore Database Table Struture 9211

www.manaraa.com

B-1 An XML Serialization of the RDF Shema 1.0 109

12

www.manaraa.com

Chapter 1
Introdution
Haystak is an information retrieval engine designed to help users searh their digitalinformation spae. This thesis reates a new data storage layer for Haystak that weall the triple store1. The triple store provides a uniform way for lients to store exibleinformation. We all the module in Haystak whose spei� task it is to enhane auser's searh apabilities the root server. The root server will beome the prinipallient of the triple store.One thing omputers are good at is storing large amounts of data. However,onventional software does only a mediore job of helping users searh that data. Ashardware improves while osts drop, the volume of digital information available tousers inreases dramatially. Unfortunately the more information there is the harderit is to searh through it. Haystak provides a personalized tool that helps usersnavigate their orpus of information. It does so by olleting information about theuser's ontext before a searh is onduted.The triple store provides a physial representation of data that survives shutdownso that its lient may safely return to a useful state. This thesis provides a uniformway for lients to write down their state. At the same time it provides a way toprotet this storage from its lients by restriting aess to a small set of tasks.1We use this style of text when referring to Haystak-spei� modules and other design entitiesthroughout the body of this paper. 13

www.manaraa.com

1.1 The ProblemThe goal of the Haystak projet is to provide an information retrieval tool that putsthe power of searhing in the hands of the user. The power of a Haystak searh ismeasured in terms of its ease of use and its ability to point out data relevant to theontext of a query.It should be relatively easy to write Haystak data in the triple store. A lot ofHaystak data is metadata. Metadata is data about data. In Haystak it may take theform of an author of a partiular doument or a user's annotations on that doument.Haystak metadata is often expressed as relations that onnet data together with alabelled link.The triple store was designed with Haystak, its primary lient, in mind. A re-quirement of the triple store is that it provide the ability to transfer Haystak datainto it without breaking any of the system. Complying with legay ode proved tobe quite a hallenge indeed.The basi data struture in the triple store is an ordered triple. In terms ofHaystak metadata, eah triple ontains a pointer to the soure and sink togetherwith the string label of a relation. The triple store also allows storage and retrievalof a set of bits, suh as a doument's body. The meaning of doument text storedin Haystak is in its relationship to other data, or, using triple store terminology, themeaning is loated in the triples about the bits. Metadata an be attahed to thedata stored in the triple store just as the author of a doument an be attahed to adoument in Haystak.Design and implementation of the triple store fouses on several goals. A triplestore has been developed that� adheres to many general Haystak design priniples.� an oexist with Haystak without breaking any part of it.� maintains a web of trust that helps dynamially loadable internal proessesommuniate while proteting them from external harm.14

www.manaraa.com

� allows multiple opies of itself and other modules to run onurrently.� provides a exible storage layer for Haystak data.� provides a robust interfae on whih a orretly designed Haystak an dependfor information storage.� provides a stepping stone for Haystaks to begin ommuniating with eah other.By ahieving these goals the triple store has been added to the repertoire of usefulmodules in the Haystak projet. A fortuitous side e�et is that the triple store maybe used by lients other than Haystak's root server. Another benevolent side e�et isthat there is now a way to introdue new modules in Haystak and to modify existingrigid ode to beome exible and reusable.The triple store implementation onnets to a third-party database that is not partof the Haystak projet. We do not want to require that Haystak users onnet toany partiular database in order to run Haystak. Haystak ode is written primarilyin the Java language [33℄. The triple store uses a Java pakage alled JDBC [25, 29℄that allows standardized statements to be exeuted on a large number of di�erentdatabase bakends, maintaining Haystak's ability to run on many platforms. Wealso want to minimize the overhead of setting up the triple store to use this database.After a user an log in to his or her database, he or she simply on�gures the triplestore with a JDBC driver name and a pointer to the database.Haystak ontained a lot of useful funtionality prior the reation of the triplestore. In order to preserve this funtionality, the triple store does not break legayHaystak ode. Rigidity of existing design made adding a new low layer very diÆultin some ases.Several small proesses alled servies run within Haystak to help improve infor-mation storage and retrieval. We want these servies to be dynamially loadable andunloadable as they are needed. As servies evolve, we want to restrit their ability todamage other servies and parts of the Haystak Data Model. We introdue a utilityas a generalization of the servie idea. Utilities have the same dynami properties of15

www.manaraa.com

servies but aren't part of the Haystak root server module. Utilities may be part ofany module in Haystak. We introdue the Haystak Trust Model that utilities anuse for ommuniation with trusted utilities and for protetion from untrusted utilities.This trust model is somewhat similar to the trust model used for servies. Nothingexpliitly prevents servies from adopting the Haystak Trust Model in the future.One negative side e�et of the Haystak Servie Model is the requirement foruniqueness of servies running inside Haystak. The triple store uses some servies thatwere one restrited by uniqueness, suh as those in the Haystak ommuniationsmodule. These servies performed tasks that are useful to modules other than theroot server. We have relaxed their reliane on a root server and renamed them asutilities. If a utility registers in a module's trust area it is restrited by uniquenesswithin that trust area only. Sine we permit reation of multiple trust areas, we anhave multiple opies of utilities that work within di�erent modules onurrently.The root server will beome a large-sale lient of the triple store. The root serverstores most of its information aording to the Haystak Data Model. The triple storewas designed to permit physial storage of that model. It is exible enough to storethe many di�erent types of Haystak data and metadata. The triple store's exibilityomes in part from the uniform way all information is stored. A lient an write downunproessed data as well as proessable metadata desriptions.The root server will use the triple store to give its data a more permanent existene.We want Haystak to be able to remember all of the things a user has plaed intohis or her Haystak, as well as all it has learned about the user. In the event of anunexpeted failure, we want Haystak to be able to return to a reent useful state. Thetriple store provides the ability for a multithreaded lient like the root server to protetits internal data. To do this the triple store supports transations that an be used toseparate one series of ations from another. Just like we need to protet servies fromdamaging eah other, we also need to protet threads from damaging physial datashared with other threads. The triple store provides transations that a multithreadedlient an use to maintain a meaningful state during exeution, shutdown, and failure.It remains the responsibility of the lient to use these transations orretly.16

www.manaraa.com

The triple store's uniform methods will help make its data more portable. Al-though personal Haystaks urrently an not ollaborate with eah other, we expetto add this feature in the future. To use the triple store, Haystaks must express allmeaningful data using the uniform data strutures of triples and unproessed bits.It seems natural that in the future two Haystaks ould transfer knowledge usingversions of the same desriptive methods they used to write their triples and bits inthe �rst plae.1.2 OverviewThis thesis disusses how the design goals of the previous setion were ahieved. Wetry to identify weaknesses of our solution whenever possible. We also present thealternatives onsidered where appropriate. We hope that the hanges made throughthis thesis will help Haystak beome a more dependable, and therefore more useful,searh tool.The next hapter desribes some of the urrent researh tehnologies that Haystakand, more spei�ally, the triple store use. We then desribe in Chapter 3 the detailsof the Haystak projet with a fous on how the root server uses the Haystak DataModel and the Haystak Servie Model to represent and manipulate its data. TheHaystak Data Model is important in understanding the kinds of data the triple storeshould store. The Haystak Servie Model made implementing the triple store diÆult.One of the requirements of a triple store is to allow multiple instanes of its serverto oexist with the root server. We may want to use these triple store instanes forfuture ontent versioning support. It was impossible to allow multiple onurrenttriple stores and to reuse Haystak ode written under the Haystak Servie Modelat the same time. The Haystak Trust Model, a solution to this problem, supportsdynami loading of multiple instanes of modules, as presented in Chapter 4. Themost important improvement is that Haystak ode developed aording to this newmodel an atually be reused elsewhere in the system, unlike Haystak servie ode.The triple store adopts this model to establish a web of trust for its utilities. The17

www.manaraa.com

TripleStore2 interfae is desribed in detail in Chapter 5. This interfae de�nes theways that lients an use the triple store. Transations are very important to properuse of the triple store. A transation ontrat desribing the way in whih transationsshould be used is inluded with the interfae. We next desribe how the JDBCStoreimplementation of Chapter 6 performs the TripleStore methods. The JDBCStoreknows how to onnet to a database using a JDBC driver and how to translatethe TripleStore methods to this driver. The implementation of the transationontrat is very important in ensuring that the triple store behaves orretly. Chapter7 presents some relevant future researh diretions that ould improve the triple storeand the rest of the Haystak projet. We onlude with some of the lessons learnedfrom this thesis. Some lessons involve dealing with the diÆulty of taking an idea anddesigning it to work with an existing system. We also have an improved understandingof Haystak.

2We use this style of text when referring to atual Haystak ode throughout the body of thispaper. Sine Haystak ode is Java ode, we try to follow Java onventions in naming pakages,interfaes, lasses, variables, and methods. Pakages use only lowerase letters in their names.Usually interfaes and lasses have only the �rst letter of every word in their name apitalized.Variables and methods tend to apitalize only the �rst letter of words following the �rst word.18

www.manaraa.com

Chapter 2
Bakground
Before we get into the spei�s of the Haystak projet, we �rst address some relatedtehnologies. Haystak attempts to improve the searh tehnologies available todayby running a variety of servies whih aid in information storage and retrieval. Thenew triple store layer is a plae to store Haystak data onsistently and persistentlyusing transations. This new module also permits storage of exible data from a stan-dard desriptive modelling framework. This hapter presents some of the bakgroundhelpful in understanding Haystak and the triple store.A ertain level of familiarity with mathematis and omputer engineering oneptsis expeted of the reader. Some tehnologies suh as graph theory, set theory, lient-server arhiteture, and objet-oriented programming design are out of the sope ofthis thesis. The author has attempted to avoid requiring knowledge spei� to theJava programming language wherever possible. However, there are plaes that referto Java beause design deisions made use of Java-spei� apabilities. If the reader isunfamiliar with Java it may be bene�ial to onsult a tutorial [33℄ or a more ompletereferene guide [9℄.2.1 The State of SearhAs the amount of available digital information grows, the problem of searhing forrelevant and useful resoures beomes more and more diÆult. Haystak provides a19

www.manaraa.com

personalized way for users to organize the orpus of information available to them.As omputer users turn more and more towards remote information repositories, thealready diÆult task of manually organizing one's personal information spae beomesunmanageable. All these systems beome more useful if we an loate the right onesand retrieve and understand useful data from them.Searhing information was relatively painless when the Internet was omprisedof individual personal omputers [20℄. These omputers usually had a somewhatless permanent onnetion to the network. Communiation often involved ontatingmahines point-to-point and following the links eah provided. Files ould be retrievedone a host was found via transfer protools suh as ftp [18℄.We would like a tool that an searh our own mahines and the network to exposethe information available. Common searh tools don't ahieve this goal beause theydo not understand their users [20℄. They do not understand natural language ques-tions. They an't orret mispellings. Users are often fored to live with the sameanned results that everyone gets for a partiular searh. Searh engines o�er littleustomization. The Haystak projet uses an alternative approah to searhing. Itwill o�er ontext aware searhing of loal Haystaks, ommunities of Haystaks, andarbitrary resoures available on the network. Haystak pays speial attention to thedynami and often transitory nature of information resoures.This setion develops the urrent state of searh. We antiipate the addition ofnew servies that enhane Haystak by performing tasks similar to the ontemporaryresearh. We must protet the triple store from servies urrently in Haystak andthose we antiipate in the future.2.1.1 A Bird's Eye View of Information RetrievalInformation retrieval (IR) is most well developed in the domain of text retrieval.Text retrieval an be used to searh through a large orpus of douments. Infor-mation retrieval tools for other types of information resoures are less well explored.Several available text retrieval tehniques an be applied to the task of retrievingother data types [19℄. As more multimedia resoures in di�erent formats beome20

www.manaraa.com

available, perhaps more searh tehnology in these domains will emerge. Currentlye�orts fous on text or other metadata that an be used to desribe resoures forwhih we have no means of searhing their atual ontent.The IR ommunity ommonly measures the e�etiveness of information retrievalin two dimensions alled preision and reall [24℄. Preision measures how relevantretrieved resoures are to queries. Reall measures how many of the relevant resouresavailable atually appear in the results of a query. Typially an information retrievalsystem has to settle for some balane between the two. It is diÆult to retrieve onlyrelevant resoures without missing something important. It is also diÆult to retrieveall relevant resoures without also retrieving some irrelevant ones.Ative areas of Haystak researh study di�erent IR models that attempt to im-prove both preision and reall [34℄. Whatever the ultimate IR solution, Haystakwill want to preompute representations of douments for query result proessing.The preomputed data strutures will be stored in the triple store as metadata abouteah doument.2.1.2 Catering to the UserAny searh engine is useless if it doesn't �nd relevant information for the user easily.Inremental steps have been taken towards developing a more useful searh engine.Improvements fous on inreasing the auray of searhes while reduing the useroverhead.One stepping stone toward better searh is inluding vertial searh tools. Avertial searh tool is speialized to ful�ll a partiular type of searh. Suppose I wantto �nd a stok quote. Many searh engines ontain a link to a speial searh formfor �nanial users. The tool itself may exeute a query aross a di�erent subset ofdatabases. Many general searh engines o�er versions of vertial searh tools [31℄.The data-entri approah also o�ers some favorable improvements to searh.Similar to vertial searh, data-entri searh has speial databases onstruted asauthorities on a partiular topi area. When a user types a query asking about showsplaying at the Boston Symphony Orhestra, the entertainment database is ontated.21

www.manaraa.com

The argument in favor of the data-entri approah says that while anyone publishingsomething on the Web ould use metadata, they won't. Metadata ould be used toplae the data in the right subjet area automatially. One annot assume thatmetadata will be written, as it adds a lot of user overhead to Internet publishing[35℄. Weaknesses of the data-entri approah inlude their inexible struture andthe overhead of reating a new topi database.The task-entered approah tries to shift searh results towards what the user istrying to do. It proposes that instead of using naiive olletion-oriented solutionsthat searh tools would bene�t from knowing the user's task [17℄. If I am trying toresearh information about Haystak, the ommonplae assumption that I am tryingto buy something is not aurate. I want to researh Haystak, not buy a bushel ofhay.The designs presented above all hint at trying to get more information about whatthe user atually wants in his or her searh results with minimal overhead. Wouldn'tit be great if a searh tool existed that ould infer things about a query based on theontext in whih the user is asking his or her question?2.1.3 Context-Aware SearhHaystak takes searh one step further. Servies maintain ontextual lues to improvesearh. One suh servie allows users to annotate douments with omments that willhelp them loate that doument in the future. Future queries will searh aross theomments as well as the douments themselves. We antiipate the reation of newservies to maintain more ontextual lues. New servies may infer personal ontextby either wathing what a user has done in the past or what he or she is doing rightnow.Suppose I frequently use my Haystak IR tool to ask questions about omputers.If I then ask a query with the term \apple", Haystak an use my past searhingontext as a lue that I want information on a ertain type of omputer. What if Iam urrently writing a doument on ooking? Further ontextual lues may diretthe searh otherwise. Suppose I have a system like Watson [6℄, that derives ontext22

www.manaraa.com

from the douments I am editing in my word proessor. It may provide searh resultsthat are spei� to a type of fruit. Suppose I am navigating through a result setthat ombines a mix of omputer and fruit resoures, but am only interested in thoseabout fruits. SearhPad [4℄ helps the user navigate by allowing users to re�ne searhand mark relevant searh results. Improvements to Haystak that inorporate similarontext awareness ould dramatially improve the user experiene.2.2 Using Transations to Ahieve RobustnessAs an appliation that stores information, Haystak needs a robust physial represen-tation. One Haystak has adopted the triple store layer, the physial representationwill be used in the event of shutdown or failure to rebuild Haystak's appliationstate. We present a model in whih Haystak an safely issue a series of hanges andqueries to the triple store inside a single oherent transation. A transation is \aolletion of operations on the physial and abstrat appliation state" [10℄.2.2.1 The ACID PropertiesTransation management helps redue the general problem of maintaining persis-tene and onsisteny to the problem of adhering to ACID transation propertiesof Atomiity, Consisteny, Isolation, and Durability. The triple store annot ensureACID-ompliane in the Haystak appliation that will eventually use it. It an onlyprovide an ACID-ompliant interfae to disk. The ACID properties will remain aonern as Haystak migrates towards reliane on the triple store.Atomiity means that the sequene of ations that onstitute a transation appearas though either all or none of them our. Consisteny means that a transationmust perform a state transition suh that if the original state was onsistent with on-straints before the transation, the new state will also onform to those onstraints[10, 28℄. An appliation that begins in a onsistent state will, by indution on transa-tions exeuted on its state, always be onsistent. Isolation means that while paralleltransations may be exeuted onurrently, none of the e�ets of their omposite na-23

www.manaraa.com

ture will ever be visible [28℄. For any two transations A and B1, the e�ets are thesame as if either all omposite ations of A ourred entirely before B or vie versa.Durability means that transations that omplete suessfully survive failures [10℄.Persistene is a synonym for durability.We say that a transation ommits if it has renouned its ability to abandonexeution [28℄, and will eventually exeute in its entirety. We say that a transationaborts if it has deided that all hanges it has made will be undone [28℄, so that it isas if the transation never existed.An ACID-ompliant transation, hereafter referred to simply as a transation,must be able to handle failures at any point. The term ommit point refers to theinstrution step within a transation where the deision to either ommit or aborta transation is made. Until the ommit point has been reahed, our transation isa pending transation. Any instant in the exeution of a program may onstitute apoint of failure.Consider the e�ets of a power outage on a PC. One a failure has ourred, theonly way to rebuild the state of an appliation is from physial storage, here, a harddisk. The appliation must have the apaity to reover from the failure using onlythat physial data. After proper reovery the appliation's abstrat state will againbe onsistent.Reovery usually involves undoing any transation that has not reahed its ommitpoint. For the sake of argument let us assume that on reovery we are only aboutompleting those transations that have been ommitted, and would like to e�etivelyabort all aborted and pending transations. The ommitted transations must be ableto run through to ompletion. The aborted transations and those transations still intheir pre-ommit phase must be ompletely undone. For all points up to the ommitpoint of a transation, we must be able to undo all hanges that have been made.One the deision has been made to ommit, the transation must be able toomplete the ations required on all resoures it e�ets. Transations should request1We use this style of text when referring to example and abstrat methods and variables through-out the body of this paper. 24

www.manaraa.com

depositpay: proedure(aount, amount);aount = aount + amount;return;paybill: proedure(aount, amount);aount = aount � amount;return;Figure 2-1: The depositpay and paybill proeduresthe ability to interat with these resoures during the pre-ommit phase [28℄. Ifwe wait until post-ommit, we may not be able to aess a resoure to perform anoperation that we are required to omplete.There are several ACID issues with whih we must ontend if we want to build alow-level interfae to disk. However, the triple store uses third-party software to bridgethe gap between memory and disk. Instead we fous on maintaining persistene andonsisteny in the appliation layer. Some issues with whih we are onerned inludeisolation and the transation spei�ations of a Java DataBase Connetivity APIknown as JDBC [25℄.2.2.2 Enforing Isolation While Using TransationsHaystak is a multithreaded appliation. Multithreaded appliations have the poten-tial for more than one transation to run simultaneously. Reall that transationsrequire only that after eah transation has ommitted or aborted, the system is in aonsistent state. If two threads want to perform operations independently on a par-tiular variable or address, loking may be required. The address an be an addressin memory or on disk, depending on the ontext of the variable. A lok is a markmade by one thread to protet the address from being read from or written to byanother thread [28℄.Consider the pseudoode in Figure 2-1 that de�nes the methods depositpay andpaybill, and give the ode two onurrent transations. Suppose the pseudoode fordepositpay desribes a transation that is omprised of several ations. First an en-25

www.manaraa.com

1. reate the depositpay environment2. read aount3. read amount4. ompute sum5. write aount (in the ontaining environment)6. lose the depositpay environmentFigure 2-2: The ations of the depositpay transationvironment is reated for the proedure. The data from the aount and amountarguments are read into the method's environment [1℄. The sum of the two variablesis omputed. That sum is written to the address of aount in the ontaining environ-ment. Finally the environment is losed. The steps ouring within the environmentare as in Figure 2-2. There is an obvious analagous expansion of the pseudoode forthe proedure paybill.Suppose ompany X wants to deposit John's $800 payhek in his aount, whileompany Y wants to automatially withdraw John's eletri bill of $100. AssumeJohn's bank aount initially has $600 in it. Think of eah operation as a transationon John's bank aount ourring onurrently. If the transations are isolated weexpet John to end up with a balane of $600+$800�$100=$1300. In the absene ofloks, these transations are not guaranted to be isolated. There exists an orderingof their omposite ations suh that the e�et is not the same as if either all ofX ourred before Y or vie versa. For example, the sequene of steps with theirassoiated values in Figure 2-3 demonstates one suh ordering. John will be verydisappointed to disover he has only $500 in his aount.With the use of loks we an ensure John will not be surprised the next time helooks at his aount statement. Consider the modi�ed proedures depositpay-isolatedand paybill-isolated in Figure 2-4 that make use of the speial proedures lok andrelease. The loking protool marks the address of its argument in the ontainingenvironment suh that no other environment may aess that address until the markis removed. A transation attempting to lok an address that is already markedmust either wait for the lok to be released or perform some alternative omputation.26

www.manaraa.com

Ation Value1. read aountX 6002. read amountX 8003. ompute sumX 14004. read aountY 6005. write aountX 14006. read amountY 1007. ompute di�ereneY 5008. write aountY 500Figure 2-3: Sequene of parallel ations violating the isolation onstraint

depositpay-isolated: proedure(aount, amount);lok(aount);aount = aount + amount;release(aount);return;paybill-isolated: proedure(aount, amount);lok(aount);aount = aount � amount;release(aount);return;Figure 2-4: Loking in the depositpay-isolated and paybill-isolated transations
27

www.manaraa.com

In this ase we just wait until the lok is released. The mark remains until thetransation that made the mark releases it. The new isolated proedures prevent theformer problem of transations reading and writing to the same loation. John isguaranteed, as long as the transations ommit, to have $1300 in his aount.The loking protool an be a soure of many pitfalls. It is important that thedesigner of a system undertands the loking protools of the modules he or she isreating or using. Partiular attention should be given to the ase where transationsreah a state where none progress beause all are waiting for a lok on a partiularresoure. We use the term deadlok to refer to suh a situation [14℄. Several possibleimplementations an be onstruted to avoid this problem.Some ommon isolation errors permit one transation to observe the ompositenature of other transations. Dirty reads allow one transation to see unommittedhanges from another parallel transation. Nonrepeatable reads allow a transationto observe hanges made when other transations ommit. Phantom reads involvebeing able to see hanges that ould inrease the size of the results of a databasequery [10, 29℄. Suppose one transation exeutes a query. Then another transationommits a hange that adds ontents that also �t the query. If the �rst transationexeutes the same query again and the new results inlude the newly added ontents,we have witnessed a phantom read.Ahieving isolation is an important onern in any transational system. A meh-anism to read and write data atomially and durably does not prevent the program-mer from violating the ACID design requirements. One example is that of usingloks to isolate the depositpay and paybill proedures. The triple store an be usedto ahieve sound transations. Database isolation level settings provide isolation forphysial data. However, sine multiple transations an run onurrently in Haystak,programmers must be areful not to violate any isolation onstraints when sharingappliation data that pertains to triple store data.28

www.manaraa.com

2.2.3 JDBC: A Transational APIThe JDBCStore implementation uses the Java DataBase Connetivity (JDBC) API.JDBC provides programmers with a tool to onnet to virtually any data soure thatuses a tabular struture. These data soures may be in the form of at �les, spread-sheets, or databases. The API uses the Strutured Query Language (SQL) languageto ommuniate with the database [25℄. One a onnetion has been establishedwith the data soure, the programmer implements put and get operations to physialstorage with a series of SQL statements. Put and get write and read data values,respetively. Before being able to use the put and get methods, SQL requires theprogrammer to reate the tables in whih SQL objets will be stored if they do notalready exist. In this setion we present an introdution to relational databases, somealternatives to relational databases, a desription of some of the tehnologies spei�to the JDBC API, and a database named PostgreSQL [13, 27℄ that we urrently useas our JDBC bakend.Relational DatabasesThe Strutured Query Language (SQL) provides a language for ommuniating with aRelational Database Management System (RDBMS). The JDBCStore implementationwrites its put and get methods as SQL statements. The fundamental struture in aSQL database is a two dimensional table. Columns represent attributes, and rowsontain values for some or all of the olumns. This at table struture alone, however,is not very useful. The power of relational databases omes from ombining themany tables that omprise the database into results for database get operations, orqueries. Get operations may be ombined through onjuntion and/or disjuntion orhierarhially to perform omplex put and get operations.A SQL query may ombine olumns from multiple tables. Whenever a booleantest lause in a query involves two olumns from di�erent tables we all the operationa join operation. Querying multiple tables in the absene of any join onstraintsreturns the Cartesian produt of the rows from eah that satisfy the other query29

www.manaraa.com

RDF Assertionsassertion id subjet prediate objet1 owers have petals2 owers bloom in-the-spring3 my-garden has-many owers4 the-grass is greenFigure 2-5: A Sample SQL Tableonstraints [7℄. Join operations embody the onstraints neessary to desribe thesubset of the Cartesian produt desired in a query result set. A less restritive typeof join, alled an outer join, does not blok a row from seletion when the value inone of the tables is empty [11℄.The simplest operations inluded in the SQL grammar are CREATE TABLE, INSERT,SELECT, UPDATE, DELETE, and DROP TABLE. Users an't do anything with an emptydatabase that has no tables, so the �rst step is to exeute a CREATE TABLE statementthat de�nes the olumn struture with a SQL type and a name for eah olumn.Often a primary key is designated to uniquely identify a row in the table. Supposewe are de�ning a table named RDF Assertions that has as olumns an assertion idprimary key, a subjet, a prediate, and an objet, as in Figure 2-5. The value ofthe assertion id primary key attribute in the �rst row is 1, and is hene a uniqueidenti�er for the row. The RDF Assertions table will not aept addition of anotherrow with an assertion id of 1. One the table struture has been de�ned, we anbegin to add data to our database. The INSERT operation adds rows to the table,speifying values for the olumns. It is one of the SQL put methods. The statementINSERT INTO RDF Assertions VALUES('1', 'flowers', 'have', 'petals') re-ates the �rst row of Figure 2-5. The SELECT operation an then be used to gener-ate database queries as mentioned earlier. It is a SQL get method. The opera-tion SELECT * FROM RDF Assertions WHERE assertion id = '1' returns the �rstrow of the RDF Assertions table. The * harater signi�es seletion of every ol-umn from the table. The UPDATE operation an modify a row or rows in a table.30

www.manaraa.com

SQL has the power to do a get aross rows and put spei�ed olumn hanges toseleted rows. There WHERE lause again de�nes onstraints as in the SELECT op-eration. The statement UPDATE RDF Assertions SET objet = 'in-the-summer'WHERE prediate = 'bloom' updates the objet olumn of the seond row of thetable in Figure 2-5 to be the value \in-the-summer". The DELETE operation allowsremoval of a row or rows from a table, and is similarly quali�ed by a set of onstraints.DELETE is an operation that ombines a get aross rows and a speial type of put thatremoves the seleted rows from the table. Finally, if a database table beomes useless,the DROP TABLE statement an be used to expunge every row in the table and thetable itself.Beause the CREATE TABLE, INSERT, and SELECT statements an only add infor-mation to the database, the destrutive impat of a malformed statement is oftennot very severe. Mistakes in UPDATE, DELETE, and DROP TABLE statements have a fargreater potential for ruining the onsisteny of an appliation that uses SQL [12℄. Forthis reason SQL databases frequently have the ability to restrit ertain users fromperforming the di�erent types of statements.The Objet-Oriented ArgumentAn alternative to relational databases is the objet-oriented database [30℄. Objet-oriented databases an store arbitrary data strutures, making them oneptuallyeasier to understand than relational databases. They are speialized for writing thesedata strutures to disk and don't have the query performane enhanements of rela-tional databases. The puts and gets Haystak data requires are very uniform sineonly a small part of the appliation atually ontrols the data model. Haystak userswill also frequently perform queries whih touh this data model. Objet-orienteddatabases are therefore less desirable Haystak data storage solutions.Objet-Relational DatabasesObjet-relational databases ombine the ease of modeling the omplex data struturesof an objet-oriented appliation with the ability to express varied relational SQL-like31

www.manaraa.com

queries without muh oding overhead. They are useful for omplex objet-orientedappliations that would also bene�t from a dynami set of query funtionality. How-ever, these databases are typially not optimized for transation proessing of thefrequent queries we expet from Haystak [30℄. Our data is also very regular, so wedon't need the omplex data strutures that objet-relational databases support.The JDBC APIThe triple store uses the JDBC API to aess its database. JDBC is a standard pakagein the Java programming pakage [32℄. This pakage gives the programmer an APIfor reating a SQL database. The API boasts seamless database onnetivity for anumber of the database management systems available. It also provides a mehanism,for those databases that support it, to serve as the basis for a transation managementsystem.We want Haystak to be able to run on as many platforms as possible whileminimizing user overhead. Our hoie of third-party databases should not requirethat the user have a partiular database. One of the reasons for hoosing to useJDBC in our triple store implementation is its ability to use a myriad of data storageappliations and formats. We use JDBC with PostgreSQL in the hopes that thetransition to another database will run smoothly.A major weakness of JDBC is its inability to perform the basi administrativefuntions neessary to set up the database for use. Perhaps this partially identi�es afault in onventional system design. JDBC redues the problem of using an arbitrarydatabase to the problem of installing and on�guring that spei� database properlyand on�guring the Java Virtual Mahine (VM) to onnet to it.To perform the neessary database installation and setup, we must go throughthe operating system. Setup proedures either require writing system dependentHaystak install sripts to on�gure and run the database server, or asking the userto perform the install. Eah senario violates a di�erent Haystak design goal. Theformer violates the idea that Haystak should run seamlessly on any platform. Thelatter violates the idea that user overhead should be minimal.32

www.manaraa.com

One a JDBC onnetion an be reated, we need to establish our transationprotool. The JDBCStore an dynamially load a database-spei� JDBC driverand establish a onnetion. The onnetion an be on�gured to allow multiple SQLstatements in a single transation. It an also be on�gured for the desired transationisolation level. There are several settings for this, but the one we are interested inis referred to as TRANSACTION SERIALIZABLE. This level provides the most restritiveset of rules for isolation between transations. It prevents dirty reads, nonrepeatablereads, and phantom reads. Eah of these events represents an at that would breakthe ACID properties of a transation. There are performane osts when using thisrestritive isolation level [29℄. The underlying database probably implements someform of loking strategy to ensure isolation of the values transations aess. But thebene�ts of ACID ompliane are enough to justify these osts.One we have made our onnetion and set up our transation strategy, we anbegin exeuting SQL ommands with interfaes from the java.sql pakage [32℄. Atransation is impliitly open on our onnetion at this point. To run another trans-ation at the same time, we have to have another onnetion. Individual Statementsare obtained from a Connetion objet. We may exeute any valid SQL ommandon a Statement. If the Statement was a query, we get bak a ResultSet objetthat allows us to iterate through the results. A Statement works well for datatypesthat an be easily inluded in a string and statements that are only exeuted one.The PreparedStatement allows us to optimize performane when similar SQL willbe exeuted repeatedly or with slight parameter hanges. The parameters an thenbe set to values of any SQL type. There is a mapping from Java objet types to SQLdata types provided. We an set values on a PreparedStatement, exeute one query,hange the values of the PreparedStatement, and exeute that query. After we aredone exeuting our series of Statements and/or PreparedStatements, we simply alla ommit on the onnetion. If something goes wrong at any point, we instead allan abort on the onnetion. After the ommit or abort all returns, the onnetionimpliitly begins its next transation [25, 29, 32℄.33

www.manaraa.com

PostgreSQLThe triple store was implemented and tested using the database PostgreSQL. It is anopen soure database whih installs on almost any modern Unix-ompatible, Win-dows NT-based, or Windows 2000-based operating system. It is an Objet-RelationalDatabase Management System [13℄. The PostgreSQL ommunity laims to supportalmost all SQL onstruts, inluding subselets, transations, and user-de�ned typesand funtions. The PostgreSQL JDBC driver laims to support the standard JDBCinterfae [32℄, and the ommunity advises users to onsult the Sun doumentation[25, 32℄. Supplementary doumentation, tutorials, and support may also be found atthe PostgreSQL Web site [27℄.While PostgreSQL is an objet-relational database, our interfae is restrited byour deision not to require a partiular Haystak database bakend. We only use thestandard SQL grammar supported by the JDBC interfae, even though PostgreSQLo�ers some extensions.2.3 Getting Haystak to UnderstandTo help Haystak desribe its data, the triple store is designed to store a exibleResoure Desription Framework (RDF) model [15℄. Traditional appliations writedown their data using database tables that have no meaning unless we an understandthe struture and interpretation of the tables. RDF provides a way for an appliationto write down di�erent data as desriptions. These desriptions give meaning to theappliation's internal struture and interpretation of data.The intent is that when Haystak migrates its data model to use the triple store, wewill de�ne a Haystak RDF model that is ompatible with Web tehnologies. We hopeRDF will be exible enough to make the transition relatively easy. This uniform RDFmodel will make piees of a Haystak's state more easily portable to other Haystaks.We expet that ollaborating Haystaks will enhane a user's searh by asking otherHaystaks for help with searhes when appropriate. In the future Haystak serviesmay exist to inorporate and understand information from foreign RDF appliations.34

www.manaraa.com

2.3.1 An Introdution to RDF
RDF was reated to make information available on the World Wide Web mahine-understandable [26℄. RDF represents information in the form of an assertion thatdesribes some relationship between data objets. An assertion's data objets, orresoures, an be any entity, digital or not. The premise is that the metadata thatdesribes a resoure an provide an understanding of the resoure. The metadata,whih is itself syntatially indistinguishable from the data, gives ontext to theresoure. From this ontext a mahine an disern meaning.RDF proessors an automate the task of proessing the information in an appli-ation's RDF model. These proessors read the ontents of a model and trae themodel's meaning bak to something they an understand. A foreign RDF model mayrefer to shemata that de�ne the types it uses to desribe its data. The generi on-ept of a type or ategory is alled a lass in RDF [15℄. A shema may in turn referto lasses de�ned in other shemata. All shemata may be traed bak to the RDFShema Spei�ation 1.0 [15℄. If an RDF proessor enounters metadata it annotunderstand, it an trae the lass hierarhy bak to this shema.XML is a syntax one an use to write down an RDF model. It is a well supportedsyntax that provides information in a mahine-readable form [5℄. Future Haystakresearh may inlude adapting the XML parsing servie to read and write to thetriple store. The triple store design evolved from a ombination of both the urrentHaystak Data Model and the similar RDF model. Using XML to write this modelis beyond the sope of this work. XML is desribed in detail at the World Wide WebConsortium Web site [5, 14, 16℄. An XML formal grammar that may be helpful inunderstanding RDF terminology is provided for referene in Appendix A. The XMLserialization of the RDF Shema Spei�ation 1.0 found in Appendix B may also beuseful. These appendixes read muh like HTML and may still be somewhat usefuleven if the reader is not familiar with XML.35

www.manaraa.com

2.3.2 RDF BasisThe most basi RDF expressions involve resoures and properties [26℄. A resoure is anode in an RDFmodel that an be identi�ed by a unique Universal Resoure Indiator(URI). URIs are typially harater strings that identify a resoure by onatenating aprotool, a sope or namespae, and a sope-spei� identi�er. A property is a relationthat embodies some aspet, harateristi, or attribute of a resoure and maps to somevalue. In objet-oriented terminology, resoures are to objets as properties are toinstanes. The properties of a resoure give the resoure its ontext and meaning. Aolletion of RDF expressions an be resolved in an RDF data model or ontext forrepresentation and omparison. \Two RDF expressions are equivalent if and only iftheir data model respresentations are the same" [26℄.An RDF statement, or assertion, is an ordered RDF triple that ontains a resoure,a property of that resoure, and a value for that property. Hereafter these threestatement elements will be referred to as the assertion's subjet, prediate, and objet,respetively. The subjet is any resoure about whih we assert a partiular property.The prediate is a resoure that may have other properties attahed to it to larifyits meaning and/or onstraints on its subjet and objet. The objet may be eithera resoure or literal.It is unlear to the author exatly what an RDF literal is from the literature. Aliteral is primitive data that is not proessed by an RDF proessor. Literals may ap-pear as XML expressions [26℄. For our purposes in the triple store we aept arbitrarybit string literals. An objet an be a literal while a subjet annot be a literal. It isunlear whether or not a prediate an be a literal.The triple store writes its RDF model with statements that an have only resouresas subjet, prediate, and objet. To store an assertion that ontains a literal, we�rst store the literal, and instead use the internal resoure that refers to the literal inthe statement. We note that this requirement merely desribes a partiular way towrite statements with literals and does not break the RDF spei�ations.In order to represent more omplex RDF expressions suh as statements about36

www.manaraa.com

Figure 2-6: A Simple RDF Modelstatements, we have an RDF type system. A type is a spei� property in the RDFmodel [26℄ whose value desribes the type of its subjet.A ontainer is a olletion of resoures. Containers an express assertions aboutmathematial sets. Properties an be attahed to a ontainer of authors to desribesomething about all the authors of Haystak douments.We an express higher order desriptions by writing statements about statements.In order to refer to a statement itself as the subjet of another statement we mustintrodue a resoure in our model whih represents the entire statement. The proessof reating this new resoure is alled rei�ation [26℄. Haystak uses a lot of higherorder metadata, so we reify every statement in the triple store.2.3.3 An RDF ExampleConsider the ase where we have three resoures alled \owers", \have", and\petals". To express the desription \owers have petals", we introdue the assertionwith appropriate subjet, prediate, and objet to produe Figure 2-6. The statementitself is labelled in the �gure as \<statement>".We use nodes to represent resoures and labelled ars to represent properties. Note37

www.manaraa.com

Figure 2-7: An RDF Model for a Rei�ed Statementthat the labels on the ars an themselves be onsidered resoures, sine propertiesare resoures. We use abbreviated names at this point and onsider all identifyingURIs to be in a uniform loal sope.Now onsider the ase where we want to attah something to our previous\<statement>". We want to be able to express a statement about our \<statement>".We perform the rei�ation to obtain Figure 2-7 that has a node for \<statement>".The \<statement>" resoure has the (attribute, value) pairs f(type, Statement), (sub-jet, owers), (prediate, have), (objet, petals)g reated by the rei�ation. The rei�-ation still expresses the assertion \petals have owers".Suppose we now want to say \Alyssa P. Haker says owers have petals". To ap-ture this statement in our model we attah an assertion with the original\<statement>" as the subjet. We use the property \assertedBy" to embody theonept of one entity saying a ertain statement holds. Figure 2-8 shows the resultingmodel. The additional \assertedBy" property with value \Alyssa-P-Haker" has beenadded to the \<statement>", giving it more ontext and meaning. The triple storeinterfae automatially rei�es all statements by giving eah one a new URI.38

www.manaraa.com

Figure 2-8: An RDF Model for a Statement About a Statement2.3.4 Adding Sope to RDF ResouresWe now relax our onstraint that every resoure in our RDF model must be in loalsope. We allow our model to refer to other RDF models. To aomplish this taskwe use RDF namespaes. If an RDF model is written in XML, the model's RDFnamespae is the same as the XML namespae that desribes the model [14℄. Someareas suh as the �nane domain already have well-understood and widely used XMLvoabularies. Instead of reating their own namespaes, RDF models should use thesenamespaes wherever appropriate.When examining models, RDF proessors must be able to reognize whih re-soures are to be proessed in the loal sope and whih refer to a foreign sope.Reall that URIs are universal versions of all names used in an RDF model that ex-tend beyond their loal model. A resoure that is outside of loal sope has a URIthat identi�es the namespae to be onsulted to resolve its meaning [14℄. Sine anRDF namespae is a speial kind of XML namespae it is referred to by the variablepre�x xmlns.We return to the example statement, \Alyssa P. Haker says owers have39

www.manaraa.com

Figure 2-9: An RDF Model With Namespaes Identi�ed
petals", and modify it slightly to allow to namespaes outside of the loal sope. Werefer to the basi resoures of the RDFModel and Syntax [26℄ with xmlns:rdf=\http://www.w3.org/1999/02/22-rdf-syntax-ns#". This namespae de�nes the RDF resoures\type", \subjet", \prediate", and \objet". Suppose further we have a name-spae xmlns:a=\http://my-team.org/shema/" that desribes the \assertedBy" and\have" properties. A �nal namespae lari�ation might identify the data reposito-ry \http://bar.net/" in whih we de�ne the resoures \Alyssa-P-Haker", \owers",\petals", and \<statement>". We now have Figure 2-9, whih shows a universallyreadable version of the example from Figure 2-8. The higher order statement annow be read and understood by a remote mahine.40

www.manaraa.com

2.3.5 The RDF Type HierarhyThe RDF type system will beome important in follow up work to this thesis, whenHaystak starts using the triple store. It is very similar to the type systems of objet-oriented programming languages and is desribed in the RDF Shema Spei�ation1.0 in the xmlns:rdfs=\http://www.w3.org/2000/01/rdf-shema#" namespae [15℄.Reall the namespae xmlns:rdf presented ealier that de�nes some of the basi RDFresoures [26℄. The author knows of no enforement of the rules given in these shema-ta exept possibly the fat that models that violate them may not be onsidered validRDF models at all. In this ase, RDF proessors would be expliitly forbidden toproess them.The basis resoures of the RDF Shema 1.0 are shown in Figure 2-10. The rootnode is the resoure \rdfs:Resoure". Two prinipal sublasses of this resoure are\rdfs:Class" and \rdf:Property". The properties \rdf:type" and \rdfs:subClassOf"are used in the �gure to desribe the type and lass hierarhy of a resoure. Anylass de�ned in RDF has \rdf:type" \rdfs:Class", inluding the resoure \rdfs:Class"itself. A statement with prediate \rdfs:subClassOf" spei�es that the subjet is asubset of the objet. Properties may be appended to the model to desribe existingresoures. The \rdfs:subPropertyOf" prediate is used in RDF assertions to delarethat the subjet is a speialization of the objet.For an arbitrary resoure, the type property is used to signify that the resoure isan instane of the spei�ed lass objet. An instane of a lass has all the harater-istis expeted of members of that lass. RDF permits a resoure to be an instane ofmany lasses. The subClassOf property is a transitive property. To prevent loopingin the model, a lass an never be its own sublass or a sublass of any of its ownsublasses. Transitivity also applies to the subPropertyOf property.There are also several extensions to the basi property and type system. Proper-ties an be added to other properties to further desribe where they may be legallyapplied. For example, a restrition ould require that a ertain property may beapplied to at most one subjet. One extension to the RDF Shema 1.0 is the DAML41

www.manaraa.com

Figure 2-10: The Prinipal Resoures of the RDF Type HierarhyOntology [22℄. The DAML Ontology introdues several mathematial quali�ers to themodel. It desribes set onepts suh as ardinality, disjoint, disjoint union, interset,equivalene, membership, and omplement. The instanes of a lass omprise the setde�ned by a given lass. The DAML Ontology also de�nes properties about relations,suh as uniqueness, inversion, and transitivity.We expet that Haystak will be translated into an RDF model using the toolsprovided by the RDF Shema and DAML Ontology. As this type system is verysimilar to objet-oriented type systems like Java, the migration should be somewhatstraightforward.In the next hapter we desribe the Haystak Data Model in more detail anddisover that Haystak already uses metadata relations to express a lot of its state.The next hapter also presents some of the proesses whih run in the HaystakServie Model to help with searh tasks. We see that it is important to protet datafrom these servies to ensure the robustness of the triple store. Some of these serviesare useful to the triple store and had to be modi�ed for use outside the root server.
42

www.manaraa.com

Chapter 3
The Haystak Personalized IR Tool
Many parts of the existing Haystak system had profound impat on the reation ofthe triple store. Minimizing user overhead with exible modules is an important partof both Haystak and the triple store.The Haystak Data Model (HDM) that was already in plae used a lot of metadata.As this data model preeded the notion of RDF, it instead used a less uniform storagemodel for its relations. We hope that the triple store will enhane the HDM by allowingit to desribe itself with RDF assertions.The Haystak Servie Model (HSM) was important to the triple store as well. TheHaystak Trust Model of Chapter 4 has emerged to allow the triple store to make useof legay servies. The problem with the HSM's existing trust mehanism was that itpermitted at most one instane of a servie to run at a time while requiring that allservies talk to the root server. Sine the triple store annot break existing ode, theHaystak Trust Model does not a�et the operation of the Haystak Servie Modelpresented here.There are also problems with transation management and robustness in the ex-isting data storage servies. The triple store hopes to provide a more robust interfaewith working transations.We begin with overviews of the Haystak system and some Haystak goals to helpthe reader get aquainted with the projet.43

www.manaraa.com

3.1 What Haystak DoesThe problem with urrent information retrieval tools is that their struture often does-n't suit the user's needs. Haystak is an e�ort to exploit the potential of informationretrieval for the user.As users add more and more information to their digital information spae, organi-zational struture beomes inreasingly diÆult to manage. Conventional �le systemsrequire too muh struture, and their �les and diretories ontain almost no trakingdata to desribe their ontent and layout. File systems make logial interpretationdiÆult, espeially when trying to understand the �lesystems of friends or olleagues.The solution seems even more evasive when we look at all the data available on theInternet. The struture of a Haystak information spae is more exible and anontain metadata to desribe its layout.3.2 Haystak GoalsHere we visit, larify, and modify the legay design goals [3℄ of the Haystak projetin the ontext of this thesis. Haystak should:� inlude persistent and dependable modules so that users an rely on it to storeinformation.� provide easy ustomization.� allow distributed and dynamially loadable utilities and servies. Utilities shouldbe reusable in other modules whenever possible.� be designed with an eye towards permitting inter-Haystak ollaboration.� give users an easy-to-understand querying mehanism that provides aurateIR funtions.� provide personalized query results. 44

www.manaraa.com

� provide the ability for users to both expliitly and impliitly annotate theirinformation spae.� learn from the past, and adapt to the user's hanging information needs.Sine the triple store is a low-level module it is really only onerned with the �rst�ve points of persistene, easy ustomization, reusable and loadable utilities, Haystakollaboration, and a remote query ommand line.For users to start relying on Haystak they must be assured that Haystak ispersistent. At the lowest level of persistene are data storage layers suh as thetriple store. The triple store requires little user overhead beyond the administrativetasks of setting up a database and providing a pointer to the right JDBC driver.The JDBCStore also inorporates reusable and dynamially loadable ommuniationutilities. The uniform methods of the RDF triple store will hopefully make desribingHaystak data to another Haystak easier. The triple store module also ontains askeleton for invoking put and get methods diretly to the module from a remoteommand line.3.3 Haystak: The User PerspetiveTo use any of the Haystak interfaes, I �rst run a Haystak server with defaultpreferenes. Users an hoose from a ommand line [2, 3℄, a Web lient, or a JavaGraphial User Interfae (GUI) [21℄. The remote ommand line andWeb lient requirepassword authentiation. To these interfaes we add the skeleton of a remote triplestore ommand line that also requires password authentiation1.I begin by bringing information into my orpus of data through a proess weall arhiving. Suppose I tell Haystak to arhive the MIT homepage at \http://web.mit.edu/". The request tells Haystak to store the ontents at that URL, andsome of the links that it provides, into Haystak. I an now perform a query overmy information spae with the term \siene". I am given a list of resoures, alled1The triple store and root server urrently share the same authentiation.45

www.manaraa.com

HDM RDFStraw � ResoureHaystakID � URITie � Property(Straw, Tie, Straw) � (Subjet, Prediate, Objet)� Statement or AssertionNeedle � LiteralBale � ContainerFigure 3-1: Similarities between the HDM and RDFstraws, representing \siene" in my Haystak. I an follow a link, alled a tie, tothe page labelled \Massahusetts Institute of Tehnology" and �nd a text desriptionstating \MIT is devoted to the advanement of knowledge and eduation of studentsin areas that ontribute to or prosper in an environment of siene and tehnology."The following setions look loser at parts of Haystak. We disuss the existingpiees that have had an impat on triple store design.3.4 The Haystak Data ModelHaystaks ontain straws, ties, needles, and bales. These objets form the basis of thelabelled, direted graph, or digraph, through whih a user's searhes navigate. AllHDM objets are of type straw and have a unique HaystakID to identify them.HDM objets are very similar to RDF objets. The reader may wish to refer toFigure 3-1 as a guide to similarities between the HDM and RDF.3.4.1 StrawsStraws are the basi nodes in the HDM digraph [3℄. Everything in this digraph is astraw, inluding the edges onneting the nodes. Eah straw sublass has a type thatprovides semanti information about the straw. A type an be used as a lari�ationduring searh [2℄ if, for instane, the user has requested only PostSript douments.Straws have pointers to their forward and bakward edges in the graph.46

www.manaraa.com

A straw objet is very similar to an RDF resoure. All HDM objets are straws,and all RDF objets are resoures. All straws have a unique HaystakID, and all RDFresoures have a unique URI. The triple store an be used to represent both an HDMmodel and an RDF model.3.4.2 TiesTies are the edges of the HDM digraph. They are speial types of straws that onnettwo straws in a direted fashion. A tie has exatly one speial bakward and forwardlink. The bakward pointer indiates the soure about whih a tie is reated. Theforward pointer indiates the value of the tie for that soure. Additional information,in the form of more ties, an be added to a tie to expand its semanti meaning. Toadd an edge to a tie we transform the edge (tie) into a node and reate a speialedge to its soure and its value. Ties are represented as nodes with speial unlabelledforward and bakward edges when we resolve our statement \owers have petals" inthe HDM in Figure 3-2.A tie is similar to an RDF property. A tie ats on a soure onneting it to itsvalue, and an RDF property ats on a subjet to provide a partiular value. If wetake a tie together with its soure and sink straws we have the equivalent of an RDFsubjet, prediate, and objet triple. This triple is an RDF statement or assertion.The proess of transforming a tie from an edge to a node in the HDM digraph ofFigure 3-2 serves the same purposes as rei�ation of an RDF statement. Rei�ationallows us to attah statements to statements.3.4.3 NeedlesNeedles are straws that ontain a data element, and take the form of loations, �letypes, bodies, and text strings [3℄. They are the raw bit strings in the HDM. Onetype of needle is the bits of a doument. Metadata surrounding the ontents of aneedle usually desribes information like how that doument should be displayed tothe user and the term frequeny measurements alulated for retrieval.47

www.manaraa.com

A needle is similar to an RDF literal. Reall that for the purposes of the triplestore a literal is just a olletion of bits. Raw bits in both models are essentiallyunproessed, but in Haystak a partiular servie may read the ontents of a needleand perform some task in response. The meaning of both a needle and an RDF literalis desribed by its attahed assertions.To put an RDF statement that ontains a literal in the triple store, we mustuse a URI that refers to that literal. Needles are the reason for the indiretion.Sine we always have a HaystakID that refers to a needle in the HDM, we requirethat we always have a URI that refers to a literal before we use it in the triplestore. As mentioned earlier it was also unlear to the author exatly when literalsare permitted in an RDF statement. Requiring a URI for a literal makes it so thatwe always put non-literals in our statements, and apture the same meaning. Theproperty \hasBits" is a part of our Haystak RDF model that maps a resoure to aliteral. Assertions ontaining this property express the onept that a subjet has abit string representation orresponding to the appropriate literal.
3.4.4 BalesBales are straws that represent lusters of related resoures for a doument. A baleis used to enapsulate the idea of a olletion in Haystak. Usually a partiulardoument type will have a bale of ties that are ommonly assoiated with it, suhas \author" and \reation date". Bales are used for the eÆieny gains of groupingresoure lusters in the HDM [2℄.A bale is similar to an RDF ontainer. Bales have other straws as members andan be de�ned for a ertain purpose, and ontainers have other resoures as membersand allow properties to be added to the entire olletion. Bales will be depreated byindroduing an appropriate type tie to express the idea of a ontainer.48

www.manaraa.com

3.4.5 Navigating the ModelOne we have stored things in our Haystak, how do we get around? When a dou-ment is arhived in Haystak, a small web of semanti information is attahed to thedoument. The Haystak program has aess to the forward and bakward links ofa straw and an follow them to examine this web. All of the semanti informationsurrounding a doument an be found in the onneted omponent of the HDM thatontains the straw that represents the doument. While exeuting a query, Haystakan searh through the doument's metadata to determine if it is relevant to theuser's query. Contextual lues litter the data model, giving Haystak the ability tounderstand more about its resoures. If Haystak deides a resoure is relevant, it isreturned to the user in the query results. From this resoure, the user an follow thelinks of the data model just as the automated query proessing has2.We return to the example in whih we modelled the statement \owers havepetals." This same statement ould appear as a portion of the Haystak Data Model,as shown in Figure 3-2. Here we see a network of straws. Note that eah straw, whetherit be a straw, tie, or needle, has an ID assoiated with it. This is the HaystakID. Notethat a straw, inluding the one with \ID: 1", an have multiple \bak" or \forward"links. A tie has a speial \bak" pointer and a speial \forward" pointer identifyingthe two resoures it onnets. A needle may be resolved diretly to a string literal, orany other arbitrary stream of bits, via the appropriate get method.3.5 The Haystak Servie ModelHaystak is driven by its servies. Eah servie has a servie name assoiated withit that provides a semanti desription of it's funtion. There an be at most oneservie with a given name running inside Haystak at any time. Servies depend onthe existene of a root server.In the past the root server was synonymous with the entire Haystak program.2The user's view of the data model may be a subset of the view that query servies an traverse.49

www.manaraa.com

Figure 3-2: The HDM for \owers have petals."
50

www.manaraa.com

We now have a triple store module that runs with or without a root server. Whenwe removed the root server for the �rst time, servies beame useless. The triple storeuses modi�ed versions of some of the servies that are desribed in this hapter.We begin with a de�nition of HsServie and disuss some other relevant servies.
3.5.1 HsServieHsServie is the superlass of every Haystak servie. The HsServie onstrutoris given a servie name identi�er made up of the short name, pakage, version, andreator of the servie. The short name identi�es the servie's Haystak type. Thepakage identi�es the servie's module. The version number orresponds to the dif-ferent revisions of a partiular servie's lass. We envision the dynami introdutionof new versions in Haystak that an interat with older versions or other servies.The reator identi�es the entity that reated the servie. The entire servie nametuple uniquely identi�es an instane of a servie in Haystak. Instanes of HsServieshould be instantiated, intialized for use, and losed for shutdown.Beause we annot use servies outside the root server, we have reated utilitiesthat are more exible than servies. Previously, almost everything added to Haystakwas a servie that extended HsServie. The problem was that these servies beametoo tightly oupled with the singleton root server running in Haystak. Exatly oneinstane of a partiular servie may run in the entire Haystak program, and thatservie an only run in the root server module. We wanted to use some servies in thetriple store, but ould not. Utilities provide a solution.
3.5.2 Core ServiesThe ore servies inlude the root server, the name servie, and the on�g servie [3℄.Other ore servies inlude loggers, ounters, and ahes. The assumption is thatevery servie an use any of the ore servies sine every root server starts them.51

www.manaraa.com

The Root ServieAs mentioned earlier, the root server is the primary driver for the Haystak IR tool.The root server loads in a dynamially on�gurable set of servies aording to theon�g servie. The root server's initialization method initializes all servies inludingthose dynamially registered with the name servie.The root server is an aess point for servies to obtain pointers to talk to otherregistered servies. Aess is granted through stati Java methods. This means thatno matter how many threads or servies there are, they all reeive the exat samepointers when they use the stati root server aessor methods. The result is that theentire Haystak proess shares the same instanes of servies. While stati aessorshave some bene�ts within the sope of the HSM, this strategy is not useful for othermodules that instead use the more exible and generi utilities.The Name ServieThe aess point for utilities in the triple store is the name utility, patterned after thename servie. The new Haystak Trust Model uses this non-root server-spei� versionof the name servie. The name servie is used for interservie ommuniation. It isessentially a ontainer of semanti pointers to other servies. It allows these pointersto be identi�ed by a servie name rather than the usual Java-spei� pointer.Aess to pointers via servie name is more suitable for Haystak's dynamiallyloadable servies. A servie name is a semanti desription of a servie. Servies maybe of any type but an be aessed via a semanti desription. The name servieallows us to desribe servies with string identi�ers rather than use the striter rulesof typing [2℄. In the future, the servie name may desribe how the servie is to beused in terms of the Haystak RDF ontology.Suppose I want to use the name servie to aess a query servie. In Java I amrestrited to using some aessible ompiled lass. Suppose I need to run an oldversion of the query servie to �nd results that I was able to �nd a week ago beforeupgrading my Haystak. The upgrade replaed the old version, but I an now load52

www.manaraa.com

an old version of the servie that was stored in my Haystak on disk into the nameservie. I an reonstrut the objet from its bit stream to onstrut the old version'sJava byte ode. I an then desribe to my name servie that I want a pointer to theold query servie, and be given a pointer to a type that is not aessible in Java'sditionary.The name servie identi�ation strategy also beomes useful when we want toaess an objet of unknown type. If more semanti desriptions are added to servienames we may be able to ask the name servie for a servie that an exeute a partiulartype of query. Suppose we get a pointer to servie X that is not of type query serviebut an still handle the task. We an invoke X's speialized query method withoutknowing its type3.Figure 3-3 shows how Servie A ontats Servie B through the use of a serviename T. The type of the pointer *B returned is di�erent from the type of the semantidesription T. To establish a onnetion between Servie A and Servie B, eah onemust �rst be registered with the name servie. The name servie is aessible anywhereby ontating the root server. When Servie A needs to omplete task T, it asks thename servie for a servie whih an help with T. Currently a servie name suh as Tontains only a name, pakage, reator, and version, any of whih may be left out todefault values when requesting a servie. After Haystak's transformation to an RDFmodel semanti desriptions of tasks may emerge as part of a servie name. ServieA asks the root server for a pointer to the the servie with the desription T. Thename servie searhes its tables for a servie whih an help with T. A pointer to theinstane of Servie B is returned. Now the two servies an begin ommuniating.Take another look at Figure 3-3 and see that everything in the onventional name-spae of the name servie is ontained within the root server. There is at most onename servie.The triple store uses a similar name utility that serves the same purpose as the nameservie, exept that there an be one for every module and it does not depend on a3Java provides a mehanism alled reetion that lets us all the named methods of an unkownlass or objet. 53

www.manaraa.com

Figure 3-3: Servies Communiate via Semanti Desriptions
54

www.manaraa.com

root server. The name utility handles interutility ommuniation via desriptive utilitynames. One important di�erene between the name utility and the name servie is thatthe former does not attempt to persistently save any information on disk about thestate of the utilities running within it. It is unlear exatly where an arbitrary nameutility should store its utilities lists. Also, the triple store needs no persistent state sothere is no need to implement this funtionality yet.The Con�guration ServieThe triple store uses a generi version of the on�g servie alled the on�g utilitythat does not require a root server. Both serve the idential purpose of storing theon�gurations for a user's Haystak. One type of on�guration is a list of serviesthat a user wants to load and run in Haystak. Unlike most utilities the global on�gutility is shared by all modules and ontains defaults for all module instanes.3.5.3 Data Model ServiesData model servies are those whih are permitted to reate and store HDM straws,ties, needles, and bales. It is data model servies that will eventually be modi�ed toaess the triple store interfae to physial storage. Aess to the triple store moduleshould be limited to data model servies, ore servies, and possibly a few others.3.5.4 The Communiations ModuleOne of the triple store requirements is that a remote onnetion diretly to the triplestore should be possible. In order to use the Haystak ommuniations and seuritymodules for this purpose, they had to be modi�ed. These hanges were an unantii-pated part of this thesis, but were neessary nonetheless to make servie ode useable.The Haystak Trust Model emerged in order to be able to use these servies in thesame manner as they are used in the root server. Whenever possible the atual fun-tionality of parts of the Haystak Trust Model, ommuniations module, and seuritymodule was preserved as eah was separated from root server dependeny.55

www.manaraa.com

The ommuniations and seurity modules support both the root server and theHaystak Trust Model onurrently. The reason is that nothing introdued by thisthesis an modify or break the existing root server arhiteture. The module designsthemselves would beome muh more elegant if the root server were to migrate to theHaystak Trust Model, but suh a hange is not neessary. For now the ommunia-tions module �ts the servie de�nition if it is instantiated by the root server, but it�ts the utility de�nition if it is instantiated by a triple store.The ommuniations module inludes servies4 that permit proesses outside theroot server to ommuniate with the root server. Communiation involves sendingharater string versions of ommands aross the network to the root server. To usethe ommuniations module with the root server these ommands must be understoodby the HsCommandAPI servie. If instead we are using the ommuniations modulewithin another module suh as the triple store, the ommands must be understood bythat module's ommand API.Remote Servie CommuniationFor servies running in a remote proess, it is neessary to establish a onnetion withthe root server. The root server has a MiddlemanServer listening on a port for on-netions. The remote lient uses a Middleman to onnet on this remote port. Theseurity pakage ontains objets whih failitate the enryption of ommuniationbetween middlemen. These seurity objets are inorporated into the Middleman andMiddlemanServer, and a password is required from the Middleman lient. The pass-word and the ensuing lient session that follows are enrypted. Pakets are enryptedwhen reated, and derypted on reeipt.The middlemen at as an intermediary for proessing the pakets, as seen in Figure3-4. Requests are sent from the lient side. The request is pakaged up in a paketand sent by the Middleman to the MiddlemanServer listening on the other end. Tothe lient it seems that it is ommuniating only with the Middleman. A lient request4We use the term servies sine we are talking about the ommuniations module in the ontextof the root server in this setion. 56

www.manaraa.com

to send a ommand on the Middleman simply returns the response of proessing thatommand.Behind the senes a ommand paket is reated, enrypted, and sent to the server.The server reeives the ommand, derypts it, and exeutes the ommand loally. Aresponse paket is reated ontaining the results of loal proessing, and the newpaket is enrypted and sent bak to the lient.The Command APICommand APIs serve as the the relay agent to pass messages from the Haystak lientand server to their middlemen and bak in a typial lient-server dialogue. Figure 3-4traes the path of a request from the lient to the server, and the response bak. Inthis example the ommand line, responding to user input to arhive the MIT homepageat \http://web.mit.edu/", begins the dialogue. Time progresses from the upper rightof the �gure lokwise from lient to server and bak to lient.We sometimes use the term \virtual" to refer to servies in the lient and \real"to refer to servies on the server side. Client requests are sent to the Virtual CommandAPI. This API asks the lientMiddleman to send the enrypted ommand out a soketaross the network. The Middleman Server reeives the ommand and derypts it. Therequest is passed to the Real Command API. The Real Command API searhes its tablesof registered ommands for one that an deal with the request.The Real Command API �nds and exeutes the appropriate Arhive Command.The Arhive Command in turn runs the ommand on the Root Server, and generatesa response for the Real Command API to send bak to the lient. The response issent via the Middleman Server wrapped as an enrypted paket aross the network.The Middleman reeives, derypts, and returns the response to the Virtual CommandAPI. The Virtual Command API invoation �nally returns the response \Arhived w/HaystakID: 3052" to the Command Line and hene the user's terminal. The user istold that the resoure has been arhived and is free to enter new requests. The atualarhiving is queued to minimize the lateny of the user's request.The triple store lient uses a similar protool to talk to the triple store server via57

www.manaraa.com

Figure 3-4: A User Requests Arhiving of the URL \http://web.mit.edu/".
58

www.manaraa.com

the same ommuniations and seurity pakages presented in this setion.3.6 Persistent Storage: The Old WayThere were some problems with the old persistent storage mehanism that the triplestore will eventually replae. It is diÆult to identify the intentions of the old per-sistene mehanism, sine parts of it have been deativated or are not implementedin aordane with omments and doumentation. A brief overview may still proveinstrutive in work that follows this thesis. It is important to note that the root serverstill urrently uses the old persistent storage tools.The interfae to the old storage module is a persistent hashtable. This hashtablestores (key, value) pairs for the Haystak Data Model. Aess to persistent hashtablesis mediated by a module alled the kernel. Transations would also be mediated bythe kernel, but they are urrently deativated in the ode.Many of the ideas of the kernel ould be used when the triple store replaes thepersistent hashtable if the kernel is �xed. One problem is improper use of variableswhih an potentially hold transation handles for use in Haystak threads. Allthreads share the same transation handle pointer, and onurrent transations ollideas a result.One early step in this thesis improves robustness in Haystak with a bakupservie[23℄. This servie periodially halts Haystak, opies the entire state of theHaystak Data Model to a bakup opy, then allows Haystak to ontinue. The in-tent is that if Haystak enters an impersistent state on failure, we an at least revertto a somewhat reent bakup opy. While the bakup servie may help with er-tain failures, the possibility of reahing an irreoverable state still exists. If at anypoint the bakup servie �res with an impersistent Haystak, the lean bakup will beoverwritten with a faulty Haystak state, ruining the user's Haystak.The triple store intends to provide a truly persistent remedy via a working trans-ation management system that ACID ompliant modules an use. If Haystak usesthe triple store orretly, it an be a valuable improvement over the root server's old59

www.manaraa.com

persistent storage strategy.In the next hapter we present some of the hanges that were neessary to allowthe triple store to reuse well written and useful servies. The Haystak Trust Modelpermits reuse of utilities with an arhiteture very similar to the Haystak ServieModel desribed in this hapter. In many ases design aspets are simply opied overto the reusable model. Through slight modi�ation some servies an beome reusableand non-root server-dependent utilities, while safely oexisting with the urrent serviearhiteture.

60

www.manaraa.com

Chapter 4
The Haystak Trust Model
The Haystak Trust Model is an adaptation of Haystak system design that allowsmodules to have their own namespaes. One or more instane of a module may beloaded and unloaded as needed. Emphasis is plaed on reuse of submodules to avoidwasteful design and implementation overhead whenever possible. It is now muheasier to reuse some piees of the Haystak projet.The Haystak Trust Model (HTM) �xes some of the problems reated by theHaystak Servie Model, while reusing many earlier Haystak design deisions. TheHTM introdues utilities that serve the same purpose as servies, but an be usedin di�erent modules. The HTM allows multiple instanes of utilities to oexist indi�erent modules. By ontrast, exatly one instane of a partiular servie may runat a time, and it must run within the root server module. The HTM also failitatesommuniation between utilities with semanti desriptions, in muh the same wayas servie interommuniation progresses. Communiation is permitted between allutilities in a partiular web of trust, as reated by a module. New modules shouldadopt the HTM and inlude reusable utilities where appropriate.The reation of the HTM has done little more than make Haystak design moreexible. Most of Haystak remains unhanged. The entire servie hierarhy hasnot been hanged, sine suh a modi�ation would require editing more than onehundred lasses. Changing servies to the Haystak Trust Model is not absolutelyneessary at this point. However, two legay modules were modi�ed. The seurity61

www.manaraa.com

HsServie : root server :: NamedUtility : <arbitrary module>servie : servie name :: utility : utility nameFigure 4-1: The Relationship Between Servies and Utilitiesand ommuniations modules have been adapted to support the more exible HTM.In order to avoid breaking the root server, these modules urrently support both theolder Haystak Servie Model and the newer Haystak Trust Model.4.1 A New Distintion: Utilities vs. ServiesWe present the onept of a NamedUtility to improve upon the HsServie hierar-hy. The NamedUtility lass is the lass at the top of the utility hierarhy. Heneall utilities are sublasses of NamedUtility. A utility is a generi servie that does notrequire a root server and that permits multiple instanes of itself in di�erent modulesonurrently. Figure 4-1 demonstrates the relationship between servies and utilities.One of the features of a servie is the desriptive servie name it is given upon instan-tiation. The servie name is used as a desription of the servie during interservieommuniation. We use a utility name in plae of a servie name for utilities in the HT-M. Utility names are used in the same way as servie names to maintain a onstistentdesign throughout the Haystak projet.A NamedUtility is any utility to whih we an refer via a utility name desription.A NamedUtility may optionally register itself with, or delare itself an availableresoure to, a namespae. Other utilities in the same web of trust as that namespaemay then aess the NamedUtility via its utility name. We an register utilities withina single namespae upon instantiation. We an also delay namespae registration.Namespaes for arbitrary modules are presented in more detail in Setion 4.3. Autility is also impliitly initializable and loseable. These two methods ensure thatthe utility itself is dynamially loadable and unloadable.Some servies were modi�ed to run as utilities that may be used in any module.The modi�ation ourred within the ommuniations and seurity modules. Both62

www.manaraa.com

modules are used by the triple store and may be useful to any future module thatdesires ommuniation and seurity. These lasses are servies when instantiated bythe root server module, and utilities when instantiated by the triple store or any othermodule. We still allow them to be servies beause we require that this thesis leavethe root server module unhanged. We allow them to be utilities beause they areused by the triple store as well. The onfusion remains beause the introdution ofthe HTM ould not break the way the root server already funtions.4.2 Haystak Without a Root Server?Previously, the onept of a Haystak without a root server did not exist. We nowpresent an alternative to that design where the root server merely represents themodule that performs all of the IR funtionality of Haystak. In our new model wean have arbitrary modules, whih may use several utilities, running. A module is anyself-ontained proess running in the Haystak memory spae. Modules an talk withdi�erent parts of Haystak when permitted by the system. A module might interatwith the root server, triple store, or any other module, or it might run ompletely onits own.We are now moving towards a new model of the Haystak world, as Figure 4-2shows. This model shows two di�erent aspets of Haystak. One part has everythingthat happens inside the Haystak proess. The other piees are proesses runningoutside the Haystak proess. The boundary between proesses is a grey wavy linein the �gure. Arrows indiate ommuniation aross the boundaries.The middle of the �gure shows parts of Haystak that an run on the serverside. Above and below the grey boundaries are proesses whih an run in remoteprograms. In the old model we always had one root server running on the Haystakprogram server side. Now we may run either a root server or a triple store. Note thata solitary triple store does not support the root server IR apabilities. The design alsomakes it possible to run one root server and many triple stores onurrently.The top of Figure 4-2 shows the ways to onnet remotely to the root server.63

www.manaraa.com

Figure 4-2: The New Haystak Model
64

www.manaraa.com

There exists the possibility for remote servies to operate outside of the root server andommuniate with the root server via a speial servie. There is also a remote ommandline, whih makes use of the ommuniations and seurity modules as servies. Theatual dialogue is oordinated by a middleman-to-middleman server onnetion. Themiddleman arhiteture enrypts authentiation and the ensuing information exhangeusing the seurity servies. There are also other remote user interfaes, suh as a Webinterfae, that an onnet to appropriate servies.The bottom of the �gure shows how one an remotely onnet to a triple store.The triple store uses the ommuniations and seurity modules as utilities. Using themas utilities just means that they use a triple store namespae for interutility ommu-niation rather than the root server namespae. Again the atual remote dialoguefollows the middleman arhiteture, inluding enryption and authentiation.We expet that the root server will eventually migrate to the triple store for per-sistent storage. Currently the root server uses other data stores suh as the persistenthashtable for this purpose. The onnetion between the triple store and the root serveris surrounded by question marks in the �gure. The question marks denote possiblelines of interativity in the future. Sine the migration to the triple store has not yetbegun, we don't know whether we will onnet with the triple store diretly or viafuture modules. Note that a future module may be granted permission to interatwith the root server, the triple store, or both.Using the Haystak Trust Model, the triple store is a modular entity whose u-tilities have less dependeny onstraints than their servie ounterparts. We maynow run an arbitrary number of triple store modules on their own. We an run atriple store without a root server. The triple store module depends only on the ex-istene of the haystak.utils pakage, the haystak.seurity pakage, and thehaystak.ommuniations pakage. This makes sense sine the triple store is a u-tility module that uses seurity for enryption and deryption and ommuniationsto support remote lients. It should be noted that the haystak.exeptions pak-age is atually required as well, beause older Haystak modules put their exeptionsthere. Exeptions are Java objets whih are usually used to indiate some ritial65

www.manaraa.com

or nonritial failure during a method exeution.4.2.1 The Con�g Utility is Essential (sort of)Previously, we needed to have a root server and all its ore servies in order to runany other part of the Haystak program. With the introdution of a standalone triplestore, we require only a on�g utility. When we say the on�g utility is essential underthe HTM, we do not mean that all future modules will need it. We just assume thatmost modules will want to make use of the on�guration apabilities it o�ers. If thereis no desire to use a set of dynami on�gurations for a module, it is �ne not to havea on�g utility.The root server urrently runs without a on�g utility beause the haystak.servie pakage and all subpakages were never touhed during reation of the triplestore. The root server runs with its own on�g servie. The on�g servie and on�gutility support idential funtionality exept that the servie version may only be usedwithin the root server. For the root server to reate and use a ompletely separatemodule suh as the triple store, it must �rst initialize a global on�g utility.4.2.2 Other Essential UtilitiesThe logging apabilities present in the root server may be modi�ed for future use byutilities. We reognize that logging is probably useful in the regular operation anddebugging of any module. For this reason, we may eventually require the existene of alogging utility. It is important that this and any other utility dependenies be examinedlosely before adding them to the HTM. Otherwise we may end up overonstrainingour utility model and reating the same problems we faed with the servie model.4.3 A Per-Module Namespae UtilityThe entity a NamedUtility registers with is alled a name utility. The name utilityis a NamedUtility, but does not register with itself. The name utility represents a66

www.manaraa.com

namespae whih is an area of trusted ommuniation between utilities. There is aglobal namespae and a module-spei� namespae. If a NamedUtility is registeredwith the global namespae then anything in the Haystak program is in its trusted weband an ommuniate with it. If instead the NamedUtility registers with a module-spei� namespae, aess to the utility is limited to those within that namespae.4.3.1 A Namespae ExampleFigure 4-3 depits the reation of the JDBCStore module and its subsequent intera-tion with the namespae. Module-spei� namespaes are reated by the ommandgetNextNameSpaeID in the Loadables lass. This returns a key for using the name-spae in the future.We all a module a blak box if the internal mahinery of the module annot beexposed. The programmer is restrited to an API of input and output methods. Ablak box module is reated by instantiating and initializing a single instane of alass. We all this instane the ontrolling lass of the module, sine the interfaesit implements are the only methods available outside the blak box. A module anbe a true blak box if its ontrolling lass never exposes the namespae key it usesin internal methods. The JDBCStore implementation of the triple store is one suhmodule ontroller.Time progresses in the �gure from top to bottom. To the left of the JDBCStoreboundary is the module reator's namespae. The inputs and outputs of methodsross this line, but the blak box of the JDBCStore is maintained so long as no utilitypointer or namespae key is sent aross the boundary.4.3.2 Who Controls a Namespae?The JDBCStore reates a namespae when it is instantiated, and hides the namespaekey within its private representation. During initialization it an then reate newutilities and pass them the namespae key, as with utilities A and B in the �gure.Passing the namespae key to eah NamedUtility's onstrutor registers the new67

www.manaraa.com

utility in the module's namespae. The utility keeps a opy of the key in order toommuniate with other utilities in the namespae.
4.3.3 The Namespae De�nes a Web of TrustThe namespae key de�nes a web of trust for a module. Suppose methodX() isinvoked, as per Figure 4-3. Utility A an use its opy of the key to get the nameutility by invoking Loadables.getNextNameSpaeID(). Utility A an hoose to geta pointer to another registered utility using a get(T) symanti method all. Utility Aobtains a pointer to Utility B, and interation follows. Eventually the method returnso, some arbitrary objet.The key is veri�ed before the Loadables lass will return a pointer to the ap-propriate name utility. Veri�ation is done by heking that it is a pointer to theatual identi�er objet reated when the namespae itself was reated. Java preventsother modules from arti�ially reating this pointer. The only way to grant aessto the key is to pass it expliitly to another module. With the key a utility an usesemanti desriptions to request ommuniation with other utilities in its namespae.The methods for aessing and managing the namespae are very similar to those inthe name servie. Methods were kept the same for uniformity. However, the nameutility adds the ability to restrit aess to its namespae and to reate an arbitrarynumber of namespaes.There is one fundamental di�erene between a name utility and the name servie.The name servie stores information about the servies that register with it peristentlyon disk. The name utility stores nothing perisistently on disk. The reason suhapabilities were not inluded in the name utility is that the triple store module doesnot require saving the state of any of its utilities. If a new module wants to save thisinformation, the peristent namespae funtionality would have to be added.68

www.manaraa.com

Figure 4-3: A Sample Module Controls its Namespae69

www.manaraa.com

4.3.4 Dynami Inlusion in a NamespaeAnother feature of the name utility is that it an dynamially load and unload theentire namespae. When the module ontroller is reated, it reates a namespae.Utilities an be registered in the namespae to interat. For example, a list of utilitiesstored in the global on�g utility may ontain utilities to load dynamially. If thoselasses are reated with the namespae key argument, they are registered in thenamespae.4.3.5 Cleaning Up a NamespaeTo lose the module we simply all the lose method on the module ontroller as inFigure 4-3. JDBCStore in turn asks expliitly loaded utilities to lose, and an then askthe namespae itself to lose. The name utility iterates through all registered utilitiesand loses eah one. When �nished, the namespae, and thus the module itself, hasbeen unloaded.4.3.6 When is a New Namespae Neessary?Utilities registered in a partiular namespae are unique to that namespae. Theutility name desription uniquely identi�es a single utility. So we know we need a newnamespae when we want to reate a new instane of some already registered utility,or if we want to reate a new web of trust for a submodule. One way to hak aroundthe uniqueness onstraint is to modify the utility name with some arbitrary haraterstring extension to one of the identi�ers.Suppose we are within a ertain module namespae and want to reate a submod-ule with its own namespae. The advantage of reating a subnamespae is that theblak box onstraint an be enfored within the submodule. The submodule preventsaess to its utilities by keeping its namespae key hidden, and a new web of trust isreated. 70

www.manaraa.com

Figure 4-4: The Namespae View of the World4.4 A More Modular HaystakWe now revisit the new Haystak Trust Model in terms of the namespae struture ofall of Haystak. Reall that all new modules may have an assoiated namespae butthat the root server has a speial namespae maintained by the name servie. Figure4-4 shows the namespae view of the Haystak arhiteture. Phrases in parenthesesdenote the aessability of eah module's namespae. Note that anything in the JavaVirtual Mahine (VM) has aess to both the Loadable's global namespae and theroot server's name servie. Module D has returned its namespae key to the rest ofthe Haystak appliation. We assume the worst ase and say that its namespae isaessible anywhere in the program. Module C and the two triple stores have kepttheir keys and therefore their namespaes private.Nothing in the root server atually uses the utility loader. We have not yet modi�ed71

www.manaraa.com

the servie arhiteture. We ould in the future port the root server to the new modeland atually make use of a name utility instead of a name servie. The bene�t wouldbe that more servies would be reusable. However, doing so would require modifyingevery blok of ode where a servie uses the name servie. Sine this happens veryfrequently, we may just reate a name utility for the root server to use only for newservies, avoiding the task of modifying existing servies. Right now the hange is notritial, as long as we keep in mind that the root server's name servie is exposed toall modules within the Haystak appliation.4.5 Adding A New ModuleThe steps for reating a new module are now a lot easier. Suppose we want to intro-due the triple store module. To run a triple store we need a ontroller lass suh as aJDBCStore. JDBCStore reates a new namespae in its onstrutor and initializes anyutilities it plans to use, giving the appropriate ones aess to the trusted namespae.Expliitly reated utilities are ore utilities of the module on whih other utilities maydepend. A middleman server is one utility that the JDBCStore an expliitly reate.A JDBCStore also searhes the global on�g utility for a list of utilities to dynamial-ly load. One utility that the JDBCStore dynamially loads is a ommand API. Theommand API is given the namespae key on instantiation. One all utilities havebeen registered, the namespae is initialized, along with all registered utilities. TheJDBCStore istane is now ready for use. Closing a JDBCStore loses all expliitly re-ated utilities, then loses the namespae. Reall that losing a namespae losesall dynamially loaded utilities.To use the ommuniations module we speify the appropriate middleman serverparameters in our JDBCStore onstrutor. JDBCStore ommuniations funtionali-ty is patterned diretly after the way the root server uses ommuniations. Wegive the middleman server the namespae key when alling its onstrutor. Otherwisethe middleman server won't be able to ommuniate with our module. A speializedommand API is optionally loaded aording to default on�gurations. Note that72

www.manaraa.com

while we an use a generi middleman server, we must use a module-spei� om-mand API implementation that spei�es how to deal with ommands as they arrive.To do this we simply extend haystak.utils.CommandAPI with a new interfae,haystak.ts.CommandAPI, that an serve as the remote triple store API.We also have a real and a virtual ommand API implementation. The real andvirtual APIs implement the haystak.ts.CommandAPI interfae. The invoke andregister methods will do di�erent things depending on whether we are a lient(virtual) or server (real) API. The virtual API will simply forward register andinvoke requests to the middleman and wait for the appropriate response. The realAPI will atually proess the register or invoke request. In the former ase a newommand is registered in the library of known ommands. In the latter ase the APIheks if there is an appropriate ommand in its library. If yes, the request is sentto that ommand. If no, an appropriate error message is returned. Currently onlya skeleton for remote ommand proessing has been set up. No ommands atuallyregister with the triple store ommand API.To run a ommand line in our TripleStoreClient, we extend haystak.utils.CommandLine with haystak.ts.CommandLine. We keep the generi ommand lineparser, so the only thing we implement is the namespae-key-aware onstrutorand the getCommandAPI method. The former registers the ommand line in thenamespae. The latter selets the orret ommand API as per the module-spei�haystak.ts.CommandAPI's utility name. Note that in order to use a ommand line wemust already have a triple store ommand API registered in the namespae. This isbeause ommand lines do nothing without an API.Creating a server for a new module is as easy as running a middleman serverand reating a ommand API (and a modi�ed ommand line if desired). Creating alient is as easy as extending the haystak.utils.GeneriClient abstrat lass andimplementing methods that assign the appropriate server network address and port,reate the appropriate ommand line, and initialize the appropriate default utilities thelient will use. The TripleStoreClient is one suh extension of the generi lient.This method of addition of a new module is very similar to the steps used by the73

www.manaraa.com

root server. The middleman and ommand arhiteture are very similar. However,under the new namespae approah we an now have more than one server at a timeand reuse things suh as the ommuniations module and the generi lient.

74

www.manaraa.com

Chapter 5
The TripleStore Interfae
This hapter presents the triple store interfae that provides the basi put and getoperations for an RDF model. The triple store is the rux of this thesis. The simpliityand uniformity of this interfae will make it a useful data store for the HaystakData Model. It's transation ontrat provides the ability to ahieve ACID-ompliantrobustness. Support for storage of RDF assertions makes it a exible storage layer.The interfae design antiipates multiple triple stores onneted to di�erent bakends.The interfae is a blak box module that never exposes anything from its internalweb of trust.As a aveat, remember that simply having a transation management system doesnot prevent failure in modules that use them. It is still possible to violate isolationonstraints on ahed objets, for instane. Refer to Setion 2.2.2 for a review of theisolation requirements for an ACID-ompliant system. The transation managementsystem reated by the TripleStore1 interfae is just a tool box for building an ACID-ompliant module. This thesis deals primarily with the JDBCStore implementationof the TripleStore that is desribed in Chapter 6. It is possible that some futureimplementation might fail to adhere to the transation ontrat if it is not arefullywritten.In this hapter, we present the transation ontrat in detail. We then desribe1The TripleStore is the atual Java interfae. It supports the methods of th abstrat triple storeinterfae 75

www.manaraa.com

briey how a triple store an save a exible graph for the root server. Next the abstratinterfae is presented. We then explain how this interfae beomes useful as a tool forwriting down the meaning of Haystak information in an RDF assertion store. Weonlude with a desription of the mehanism for ommuniating with a TripleStoreboth within the loal appliation and remotely via the middleman arhiteture.5.1 The Transation ContratThe triple store provides a transation management protool that an be used toahieve robustness in Haystak. The basi ontrat is simple.� BEGIN TRANSACTION: Begins a new transation. Transations may behandled either impliitly within a given thread for a given instane of a triplestore, or expliitly via transation handles passed in to eah method.� INTERACT WITH TRIPLE STORE: One a transation is open, the getand put methods of the triple store may be exeuted. Note that while the atualopies of data in the database will be isolated, this annot ensure isolation ofany ahed versions or opies of that data whih might be shared with otherthreads.� ABORT TRANSACTION: This method allows everything exeuted sinethe BEGIN TRANSACTION all to be aborted. A transation may be abortedbeause some part of the transation has aused an error, or beause the deisionhas been made to drop a transation.� COMMIT TRANSACTION: This method allows everything exeuted sinethe BEGIN TRANSACTION all to ommit and beome part of persistentstorage. This is the most ommonly expeted onlusion of a transation.In order to ommene a transation, BEGIN TRANSACTION must be exeuted.Transations may be maintained impliitly on a per-thread-per-instane basis or ex-pliitly with a transation handle objet. Eah impliit transation handle may be76

www.manaraa.com

used in only one thread for a given triple store. An expliit transation handle maybe used to pass a transation around in several threads. Speial attention to isola-tion and oordination is advised when attempting to use transation handles in thisway. The transation handle goes through some authentiation eah time it is used.If at any point an invalid handle is used, or if no transation is open for the giventhread-instane, an appropriate TransationExeption is thrown. A valid handle isa handle that was obtained from a partiular instane of a triple store.A partiular implementation of the triple store may optionally hoose to permit atransation handle from one instane to be used on another instane. Two JDBCStoreinstanes allow transation handles from eah other only if they both onnet to thesame atual underlying database with the same username.One a transation is open, the module using it must realize that it has seized aresoure and that it is bloking the rest of the system from using that resoure. Inthe ase of the JDBCStore this resoure is an atual database onnetion, urrentlylimited in number to a ompile-time onstant for every instane. Even if a moredynami onnetion pool is reated in the future, resoures will still not be releaseduntil either an ABORT TRANSACTION or COMMIT TRANSACTION method isalled.With an open transation, other triple store methods may be exeuted on demand.These methods are desribed in detail in the interfae de�nition disussed in Setion5.3. Note that at any point a TransationExeption indiates an attempt to usean invalid handle or the absene of a transation in the given thread and instane.If an AbortExeption is returned during exeution of a transation, there was someproblem interating with the underlying data store. In most ases a problem withthe data store indiates the need to abort the transation.It is good programming pratie to ensure that everything an be exeuted toompletion before the deision is made to ommit. When the root server begins touse a triple store for persistene, we must remember that aborts must be possible anytime before the ommit point. 77

www.manaraa.com

The COMMIT TRANSACTION and ABORT TRANSACTION methods mark atransation appropriately, taking are of all disk hanges and freeing up the underlyingresoure so that other parts of the system may use it. Either method may throw anAbortExeption. In the JDBCStore implementation an AbortExeption is thrownif the ommit or abort throws a SQLExeption from the Java JDBC layer.One the ommit or abort method ompletes, the underlying resoure in a trans-ation is freed. If we are using an impliit transation handle, then no transationis open in the thread and instane. If we are using an expliit transation handle,then it is no longer valid sine the resoure attahed to the handle has been released.We must exeute another BEGIN TRANSACTION statement to ommene with thenext transation.There is no need for an expliit reovery proedure for the triple store module.State is meaningless until a ommit, and ommits are permanent. Our intent is thatthe triple store an safely fail at any time. Reovery is impliitly handled by theunderlying database of the JDBCStore.5.2 A Flexible Graph for HaystakAs mentioned earlier, one of the requirements of our persistent storage interfae isthat it provide a exible layer for the Haystak Data Model. The triple store interfaepermits suh a model. Given any graph, we an represent it with ordered triples.Any onept or struture an be desribed in terms of these triples. The graph maybe updated through deletion and insertion of triples and literals.One Haystak has migrated to the triple store bak end, the objets of the HDMwill be stored as triples. Straws, ties, needles, and bales will serialize their states interms of a series of triples. Saving any of these objets to disk will mean savingall triples representing its state. The ontents of needles will be saved by storing orretrieving arbitrary bits. Sine there is no update onept in the triple store, there willbe no update proedures for Haystak. Updates will be ahieved by erasing one pieeof information and replaing it with another. This is in keeping with the immutable78

www.manaraa.com

CONSTRUCTOR instantiates a triple store implementationINIT initializes the triple store for useBEGIN TRANSACTION ommenes a transationCOMMIT TRANSACTION ommits an open transationABORT TRANSACTION aborts an open transationPUT ASSERTION puts a (subjet, objet, prediate) assertionPUT BITS puts a olletion of bitsGET SUBJECT gets the subjet's URI for an assertionGET PREDICATE gets the prediate's URI for an assertionGET OBJECT gets the objet's URI for an assertionGET BITS gets the bits assoiated with a literal URIGET LITERAL URI gets the loal URI for a given literalGET ASSERTIONS BY SUBJECT gets assertions with spei�ed subjetGET ASSERTIONS BY PREDICATE gets assertions with spei�ed prediateGET ASSERTIONS BY OBJECT gets assertions with spei�ed objetGET ALL ASSERTIONS gets all assertionsCONTAINS URI tests whether a URI an be foundEXPUNGE expunges every ourrene of a URICLOSE loses triple store, leans up its namespaeFigure 5-1: The Triple Store Abstrat Method Listnature of data in the Haystak IR tool. If a partiular literal hanges state it is nolonger the same entity.
5.3 The TripleStore InterfaeThe TripleStore interfae urrently supports the abstrat methods in Figure 5-1. Thislist enompasses the abstrat funtionality of the triple store. There is no type systemde�ned beause we expet a lient to de�ne its own RDF type system. All resouresare simply referred to by their URI when using the triple store methods. There areurrently two ways to aess the triple store interfae: diretly through Java methodson a lass that implements the TripleStore interfae or remotely through a set ofommands registered in the ommand API.The methods INIT and CLOSE are implemented to omply with the guidelines fordynamially loadable and unloadable modules spei�ed by the Haystak Trust Modelof Chapter 4. The methods BEGIN TRANSACTION, COMMIT TRANSACTION,79

www.manaraa.com

and ABORT TRANSACTION have already been disussed.We turn now to the methods whih may modify the ontents on disk. Theseinlude PUT ASSERTION, PUT BITS, and EXPUNGE. The PUT ASSERTIONommand takes an ordered list of three URIs representing resoures and reates atriple in the triple store for that assertion. The return type of this method is aURI identifying the assertion resoure just reated. The PUT BITS ommand takesan arbitrary set of bits and stores them in the triple store. PUT BITS returns theURI identifying the resoure whih maps diretly to the bit set. Sine Haystak isa Java proess, a olletion of bits is an arbitrary objet that is stored on disk byserializing the objet, or writing its bits down sequentially. Returning those bits laterorresponds to deserializing the objet for use. EXPUNGE performs a searh anddestroy on the database for a given URI. If the URI refers to a literal, the literal isremoved. If the URI refers to an assertion, the assertion is removed. Any assertionthat refers to an expunged URI is also expunged. It is reommended, at least for thepurposes of an RDF model, that the programmer be sure of what the rami�ationsare of expunging a URI.There are also several read-only methods available on the triple store. These in-lude GET SUBJECT, GET PREDICATE, GET OBJECT, GET BITS, GET URI,GET ASSERTIONS BY SUBJECT, GET ASSERTIONS BY PREDICATE, GETASSERTIONS BY OBJECT, GET ALL ASSERTIONS, and CONTAINS URI. TheGET SUBJECT/PREDICATE/PREDICATE method simply returns the URI of thesubjet/prediate/objet of the assertion argument. The GET BITS operation re-trieves the bit string for a resoure from disk in the form of anobjet. The GET LITERAL URI method gets the triple store's URI for a given inputliteral objet. The GET ASSERTIONS BY SUBJECT/PREDICATE/OBJECTmethod gets an enumeration of every assertion with the spei�ed resoure as thesubjet/prediate/objet. GET ALL ASSERTIONS will retrieve an enumeration ofevery assertion in the triple store. CONTAINS URI simply searhes the entire triplestore for an ourrene of the resoure spei�ed. It returns true if and only if theresoure is referred to somewhere in the triple store.80

www.manaraa.com

We use a URI in plae of an assertion, subjet, prediate, or objet, sine allresoures an be identi�ed by a URI. We have no type system written into our resouremodel, and instead refer to a resoure by just its URI identi�er. A triple store lientmay hoose to store resoures of its own type system in the model.It is important to note that the triple store interfae provides no means for anoutside entity to reate a new URI within its own namespae. The triple store thereforeontrols its own URI spae. The only way a new loal URI is reated is by addingliterals and assertions. By ontrast, we may use remote URIs within the triple store'sassertions. Everything in the model an therefore be traed bak to a literal in ourloal model or some remote RDF repository.5.4 A Better Understanding Through RDF TripleStoresThe triple store helps lients reord their state uniformly. As we argued in our RDFdesription of Setion 2.3, a lient that follows the RDF model an store the meaningof its state with metadata. RDF is powerful enough to allow arbitrary agents thatunderstand the RDF model to translate an arbitrary domain of knowledge into termsit an understand. It does this by looking up the domain ontologies to whih theforeign RDFmodel refers. It an then translate those ontologies into the RDF shema,whih the arbitrary agent might then understand. These features may be helpful tothe ollaborating Haystaks of the future.5.4.1 A Uniform API for Storing RDF ModelsThe Haystak IR tool wishes to eventually understand its own data as well as datastored in other Haystaks and foreign RDF appliations. Sine the triple store is well-suited for storing RDF models, these apabilities will beome feasible when Haystakuses the triple store.Building an RDF onotology to use with a triple store will require some work.81

www.manaraa.com

Eventually the Haystak IR tool will store its data model in the triple store aordingto a Haystak ontology. We an refer the ontext of our model to the namespae ofthe RDF shema 1.0, for instane, by storing the URI literals therein. One we haveput the URIs of resoures, lasses, properties, et., from that shema into our model,we an begin adding statements to further de�ne the Haystak ontology. We mayalso wish to refer to the URIs from separate useful RDF ontologies.In order to add assertions to a triple store we must reognize that the triple storeontrols its loal URI namespae. We an use any loal URI that is already stored inthe triple store. We also reate new loal URIs by adding assertions or literals. Whenliterals are stored as bits, a loal URI is reated and returned to the lient for usein assertions. We an also use foreign URIs in our statements. The lient an startreating RDF statements out of URIs by using the PUT ASSERTION ommand.We introdue in our triple store a small level of indiretion where literals are �rstreferred to by a loal resoure before reating statements with them. This is so we anthen refer to the literal with our own loal URI identi�er. We do this to be onsistentwith the Haystak Data Model. Every straw has a HaystakID assoiated with itthat will eventually be replaed by a URI. Needles are straws that ontain arbitrarybit strings. Sine needles will require HaystakIDs, our literals require URIs. Theindiretion does not break the RDF model and redues namespae ollisions.We use an monotonially inreasing ounter to generate the URIs for the triplestore. An alternative approah is to use MD-5 hashes to determine URIs. For a literal,the URI would be an MD-5 hash of its bit string. For an assertion, the URI would bean MD-5 hash of some onatenation of the URIs of the subjet, prediate, and objet.For literals, we would be guaranteed that the same bit string would always resolveto the same URI, and hene be indistinguishable from the other bitwise equivalentbit strings. The hane that any two distint bit strings would map to the same URIunder this strategy is negligible. One disadvantage of this approah is that statingthe same assertion again would not add anything to the model, sine the same URIwould refer to both the original and the new statement. We may want to state thesame assertion several times if we are using an evidene aumulation strategy in82

www.manaraa.com

our RDF appliation wherein stating an assertion multiple times might make it morebelievable.5.4.2 Rei�ed StatementsIn RDF we an write a statement either as an ordered sequene of subjet, prediate,and objet resoures, or as a rei�ed statement. A rei�ed statement has the statementitself as a resoure, with the restrition that upon reation that resoure have anrdf:subjet prediate with subjet objet, an rdf:prediate prediate with prediateobjet, and so on. One we have the rei�ed statement we an attah properties tothe statement resoure to give it more ontext.The triple store automatially rei�es all statements by returning a URI identi�er forstatements upon reation. Impliitly present in methods suh as GET SUBJECT isan rdf:subjet prediate with the assoiated subjet objet attahed to the statement.5.5 Using the TripleStoreThere are two ways to use the triple store interfae's abstrat methods. The simpleway is diretly using Java method alls. The other way is using remote aess.5.5.1 Diretly Through JavaTo run an instane of a triple store loally we instantiate the JDBCStore implementa-tion, and then all its init method. We then have a triple store module that we anuse aording to the abstrat methods. The onrete Java forms of these methods, asde�ned in the TripleStore interfae, have similar Java method names, arguments,and return types. If we are using an expliit transation handle, we must use thathandle on the orret triple store. If we are using an impliit transation handle, wemust be sure a transation is open for the urrent thread and instane. When exep-tions are aught we have to deide whether or not to abort the transation. To losethe triple store we should all its lose method.83

www.manaraa.com

5.5.2 Remotely via MiddlemenRemote aess is urrently aomplished by reating a JDBCStore on�gured to usethe middleman ommuniation arhiteture. The on�guration is done by providingthe appropriate port number to the JDBCStore onstrutor. The JDBCStore thenruns a middleman server inside its namespae to wait for lient onnetions. Clientonnetions use the TripleStoreClient, a generi lient with triple store-spei�default settings.One a lient is running we have an interative ommand line to ommuniatewith our triple store. The triple store lient an urrently provide authentiation tolog on to the JDBCStore remotely. It an also send enrypted string ommands to thetriple store server. In the future ommands reeived on the server side will performthe appropriate put and get methods, returning the results to the lient.Understanding how the triple store interfae works is important for using the mod-ule. In order to improve or �x problems with the module, we must examine the im-plementation. The next hapter desribes some of the high-level omponents used bythe JDBCStore module ontroller to ful�ll the tasks required of a triple store.

84

www.manaraa.com

Chapter 6
Implementating the TripleStore
The TripleStore interfae is implemented by the JDBCStore lass. Here we pro-vide some insight into the inner mahinery of a JDBCStore. We fous on high-levelomponents of the module and disuss design rather than atual Java ode. Sinethe arhiteture of parts of the module rely on the apabilities of Java programming,partiularly the rules about aess privileges, a bakground in Java is helpful in un-derstanding this hapter. The reader may wish to onsult a Java referene guide[9℄.While this hapter desribes only one implementation of the triple store, manyvariations are possible. Future implementations should adhere to the TripleStoreinterfae de�ned in Chapter 5.The JDBCStore uses the ommuniations implementation desribed at the onlu-sion of the previous hapter. The JDBCStore an be a server for a remoteTripleStoreClient. The TripleStoreClient sets up a basi ommand terminalto aess a JDBCStore diretly.The JDBCStore onstrutor and initialization methods are desribed in detail. Wethen disuss the mehanisms by whih the triple store transation ontrat is upheld.A brief desription of URIs follows. We then desribe the struture of the databasetables that are used in the underlying database. Next a sample put and get methodare shown as representatives of the JDBCStore implementation of the triple storeabstrat methods. We onlude with a note about the way the JDBCStore module85

www.manaraa.com

shuts down.6.1 Preparing the JDBCStore Module for UseEah on�guration for a JDBCStore instane is either set as the argument of a on-strutor or, for the default onstrutor, read from the global on�g utility. The pa-rameters that may be set inlude the driver name, database URL, name of the sub-database to use, the user name to use to log on to the database, and a middlemanserver port.The driver name identi�es the JDBC driver to use. To use a di�erent vendor'sdatabase, simply indiate a di�erent driver to load. This driver must be available tothe Java Virtual Mahine in its lasspath.The database URL is a unique identi�er of the database to whih JDBC willonnet. A database must be running at that URL.A subdatabase or data blok name indiates the name of the desired databasepartition to onnet to. A subdatabase is appended to the database name to reate theillusion that multiple JDBCStores an onnet to di�erent databases without requiringadministrative on�gurations for all of them. We internally append the subdatabasename to the database table names and sequene identi�ers. Two JDBCStores usethe same database but have di�erent subdatabases if they have di�erent data bloknames and therefore deal with a disjoint set of tables and sequenes. The uriRootdata member is a onatenation of the database URL and the subdatabase name thatuniquely identi�es the triple store repository with whih we are working.The user name is used to log in to the database. The password is a seret de-rypted from a �le via the Haystak seurity pakage. The JDBCStore onnets withthe username and Haystak-wide password. The database running at the spei�edURL must allow the user name and password to login with the appropriate tablepermissions.Finally, middleman on�gurations are used to indiate whether or not we want apartiular JDBCStore to listen on a port for remote onnetions. The port may be86

www.manaraa.com

either an argument to the onstrutor or read from the on�g utility defaults.With the newly instantiated triple store, we an now initialize it for use. Weseparate instantiation and initialization to be onsistent with the rest of Haystak.The former an be done relatively painlessly while the latter must in some ases bedone in a partiular order to obey dependenies between utilities.Initializing the JDBCStore �rst loads in the JDBC driver, and then attempts toreate a series of database onnetions in a onnetion pool, desribed in Setion 6.2,using the on�gured URL, user name, and password. Connetions are on�gured touse multi-statement transations and the TRANSACTION SERIALIZABLE isola-tion level. TRANSACTION SERIALIZABLE isolation provides the stritest level ofisolation and helps ensure isolation of data values on disk in a multithreaded appli-ation. An internal method is then invoked to test for the existene of the databasetables and sequenes with whih the onnetions will interat. If they do not alreadyexist, they are reated. We ontinue initialization by expliitly loading in triple store-spei� utilities. We then impliitly load the set of lasses on�gured by the on�gutility defaults. One impliitly loaded utility is the real triple store ommand API. Weuse Java reetion to instantiate these lasses within our module's namespae bygiving them the namespae key. If our module is on�gured to allow remote onne-tions, we establish a MiddlemanServer onnetion to listen for remote lients on theappropriate port. Finally, we ask our name utility to initialize itself, whih initializesall registered utilities.6.2 How Transations WorkThe ConnetionPool inner lass manages database onnetions for JDBCStore trans-ations. A transation is opened by binding a onnetion either to the per instanethread loal variable loalCon or to a jdbTransationHandle for the lient touse. Internally this binding is reated when one of the triple store BEGIN TRANS-ACTION methods is invoked. It either hides the transation in the instane andthread, or it returns a jdbTransationHandle to the lient. The onnetion re-87

www.manaraa.com

soure that has been seized remains seized until a COMMIT or ABORT is exeutedon the transation, and then the resoure is released from the loalCon or the asso-iated jdbTransationHandle. Releasing the onnetion from a transation handleinstane renders the handle stale or useless.Internally, the ConnetionPool manages the binding and releasing of onnetionswith a list of free resoures. The methods GRAB and RELEASE are used to exeutethese operations, respetively. They obtain a lok on the onnetion pool objet whenmanipulating the resoure lists. The lok prevents situations where updates to theresoure lists would ollide. Reall the problems with isolation that an our in theabsene of loks.One we have established this way of binding atual JDBC onnetions in ourtransations, we an depend on the JDBC driver itself to handle transations. Trans-ations are impliitly open on our JDBC onnetions. The ConnetionPool's GRABand RELEASE methods ensure that no statements were exeuted aross a given on-netion from the time of the last COMMIT or ABORT on that onnetion to the timeof the new binding. We just have to make sure that our JDBCStore COMMIT andABORT methods all the onnetion's COMMIT and ABORT methods, respetive-ly, just prior to releasing the resoure. Transations e�etively begin with a BEGINTRANSACTION all and end with a COMMIT or ABORT all, as desired.Before any of the basi put or get operations are attempted on a partiularJDBCStore instane, the transation handle is always validated. We validate trans-ation handles to verify that the underlying database onnetion exists and an beused to read and write assertions and literals in this instane's namespae. If themethod is an impliit transation method, we just validate the instane's thread loalonnetion. A ertain level of seurity is enfored on expliit transation handlesbeause the jdbTransationHandle is a private inner lass of the JDBCStore, andprivate inner lasses may not be instantiated externally. Sine we return transationhandles outside the JDBCStore we must protet against the ability to use invalid han-dles obtained from di�erent instanes. We hek that the transation handle is usingthe same user name to onnet to the same database as this JDBCStore instane. A88

www.manaraa.com

transation validation error throws a TransationExeption.One important feature allows us to use the same jdbTransationHandle on dis-joint triple store repositories if they ome from the same database and user name.The JDBCStore namespae is a onatenation of the atual database name and thesubdatabase. The subdatabase just de�nes a disjoint set of tables within the samedatabase. All transation handles from the same database and username have onne-tions with idential apabilities even if they have di�erent subdatabases. We providethe ability to use transation handles in this ase beause another Haystak researhprojet needs to use multiple JDBCStores with disjoint database tables [8℄.Using transation handles from di�erent JDBCStore instanes prevents us fromhaving to write a nested transation wrapper to perform a series of subtransationson the JDBCStores. The diÆulty with writing a nested transation is that it mustprovide the ability to abort all of its ontaining subtransations until the nestedtransation itself ommits [10℄. The subtransations an't ommit at exatly thesame time, so transation wrappers must be prepared to undo already ommittedsubtransations. A nested transation an only undo a ommitted subtransation if ithas persistently logged the ability to ompletely undo the subtransation. Fortunatelywe an instead rely on the transations provided by a database's JDBC driver.6.3 How URIs WorkURIs are used to uniquely identify resoures in our JDBCStore's abstrat model. LoalURIs are maintained internally by the JDBCStore, whih manages its own URI spae.The private inner lass jdbURI is required to refer to one of a JDBCStore's loalURIs. The only way to get a pointer to a jdbURI is to somehow obtain it froma JDBCStore method all. RemoteURIs may be reated anywhere in the Haystakappliation.As with transation handles, we again verify all URIs before allowing a JDBCStoreput or get method to ontinue. We want to ensure that the JDBCStore has generatedall URIs that refer to its loal URI namespae. Violating this onstraint ould break89

www.manaraa.com

our RDF model by allowing lients to attah assertions to a loal URI that has notbeen assigned by the JDBCStore. Instead the JDBCStore manages its own loal URInamespae. A jdbURI is veri�ed to make sure that it has an idential uriRoot. ARemoteURI is veri�ed to make sure that it refers to a resoure outside the loal URInamespae.Internally a jdbURI is just the uriRoot followed by a numeri identi�er. Eahtime a new resoure is stored in a triple store, it is given a jdbURI with uniquenumeri identi�er orresponding to the next value of the sequene in the database.The value of the next available identi�er is determined persistently from the databaseby the JDBCStore private method nextId.RemoteURIs may be any string that an identify a resoure outside of a partiularJDBCStore's URI namespae. It has a publi onstrutor that allows lients to in-stantiate objets referring to remote URIs. Beause the JDBCStore manages its ownloal URI namespae, a RemoteURI may not start with the uriRoot of the JDBCStorein whih it is being stored.6.4 The Database TablesThe JDBCStore implementation uses JDBC onnetivity. JDBC supports the SQLstandard for table reation and the basi relational database put and get operationsdesribed in Setion 2.2.3. Instead of getting into a spei� desription of how eahTripleStore method is implemented we just present the database table struture.These database tables are standard for every JDBCStore instane. We provide awalkthrough of how these tables an be used with a sample JDBCStore put and getmethod later in Setions 6.5 and 6.6.We have omitted the subdatabase suÆxes of the table names in our disussionof database tables. Two JDBCStore instanes working on the same database withdi�erent subdatabases will have di�erent table suÆxes.The database table shema for the JDBCStore an be found in Figure 6-1. TheId Sequene table is atually just a monohromatially inreasing sequene that is90

www.manaraa.com

used in the reation of new loal URIs for the JDBCStore. The Objet Literals tableis used to store the serialization of arbitrary objets to disk. The String Literalstable is used for speial storage of Java Strings. The same publi methods use theObjet Literals and String Literals tables depending on if the literal is an ar-bitrary objet or a String. Finally, the RDF Assertions table stores rei�ed RDFtriples.6.4.1 Storing LiteralsThe methods that deal with triple store literals use the Objet Literals andString Literals tables. These methods inlude PUT BITS, GET BITS, and GETLITERAL URI. We are not guaranteed that two arbitrary Java objets with equiva-lent state will serialize to the exat same set of bits in our database. To still supportstorage of arbitrary objets, we keep the Objet Literals table. However we reatea speial ase for harater string objets, whih we store in the String Literalstable. The way we store harater String objets is to onvert them to byte stringsand ompute an MD5 �ngerprint of the entire harater sequene. We store this�ngerprint along with the String literal itself. We an then retrieve a String literalby searhing aross the MD5 �ngerprints. This MD5 does not funtionally serve as aURI, and is never exposed to the JDBCStore's lient.Databases di�er in the way they handle binary large objets (BLOBS). For exam-ple, PostgreSQL used an oid to refer to a BLOB [13℄. A database table that storesa BLOB has an oid olumn that stores a monotially inreasing internal identi�erfor the BLOB. If we store an idential BLOB twie it has a di�erent oid eah time.In the Objet Literals table, we an use a bits id to SELECT the byte streamserialization of the BLOB. However, we annot use the serialized BLOB to diretlySELECT its key after storing it in the table, sine the BLOB's byte stream is di�erentfrom the oid.The Objet Literals table is omprised of a bits id and a the bits olumn.The bits id for a new literal is obtained from the Id Sequene and represents a URIloal to the triple store repository. The the bits olumn stores a binary large objet91

www.manaraa.com

Id Sequene<ount>Objet Literalsbits id the bits<uri> <oid>String Literalsstring id md5 the literal<uri> <md5> <oid>RDF Assertionsassertion id subjet prediate objet<uri> <uri> <uri> <uri>Figure 6-1: The JDBCStore Database Table Struture
representation of the serialized bits. Sine databases di�er in the way they handleBLOBS, searhing aross this olumn during a GET LITERAL URI ommand mayfail to return the URI for an equivalent already saved input literal objet. The PUTBITS and GET BITS operations behave as expeted, as objets may be serialized forstorage and deserialized for later use.The String Literals table has a string id, md5, and the literal objet. Asmentioned we use this table for storage and retrieval of String literals. The string idolumn serves the same purpose as the bits id olumn of the Objet Literals table.It ontains a new id obtained from the Id Sequene at insertion time and is a loalURI. The md5 olumn ontains an MD5 hash of the String literal's harater sequene.This olumn is used for searhing during a GET LITERAL URI ommand to obtainthe internal URI for a String literal. The PUT BITS and GET BITS operations allowus to store and retrieve the bits for a String literal aording to the the literalolumn. The the literal olumn saves the String's serialization as a binary largeobjet that an later be deserialized to reate an equivalent String literal objet.92

www.manaraa.com

6.4.2 The RDF AssertionsThe JDBCStore's RDF Assertions table stores the desriptive RDF metadata. EveryRDF assertion takes the form shown in Figure 6-1 and is therefore impliitly rei�edto give the lient the ability to attah properties to the statement itself. A loalRDF assertion in our JDBCStore may ontain any ombination of a loal or a remotesubjet, prediate, and objet.The �rst olumn is an assertion id that is a loal URI to refer to the state-ment stored in that database olumn. Loal URIs for new assertions are obtainedin the same way as for the bits id and string id olumns of the literals tables byusing the next available id from the Id Sequene. Eah subjet, prediate, andobjet olumn ontains a loal or a remote URI that has passed the JDBCStore'sURI restritions.The bulk of the triple store methods read and write to the RDF Assertions meta-data table. As this table �lls up the RDF model in our JDBCStore beomes veryomplex. We believe that the metadata together with literals will be suÆient tostore the Haystak Data Model persistently on disk.6.5 A Sample PutThe available JDBCStore put operations have similar implementations. Here we lookat the putAssertion method in the ase where a transation is impliitly open onthe instane and thread. This operation takes as input subjet, prediate, andobjet arguments. They orrespond to the RDF notions of a (subjet, prediate,objet) triple. The e�et of the method is to add a new assertion in our triple store.Sine many similar methods appear in slightly di�erent ontexts, we have privatehelper methods to handle the di�erent possibilities. In this ase we all the privatemethod putAssertion with the appropriate JDBC onnetion objet. Sine we areusing impliit transations, the onnetion is just retrieved from the thread loalvariable loalCon. The private method �rst validates that we have a onnetion,then validates all of the input URIs. Next we reate a unique identi�er for the new93

www.manaraa.com

assertion by alling nextId to obtain an available id from the Id Sequene. Weretrieve a prepared statement from the JDBC onnetion to insert a row into theRDF Assertions table using a SQL INSERT method. We set the assertion idto be the URI within the loal URI namespae with the appropriate new numeriidenti�er. The subjet, prediate, and objet olumn values are set to the inputURIs. Any ombination of loal and remote resoures may be used in an assertion solong as the URIs have passed veri�ation. Finally we return the jdbURI for the newassertion id to the environment whih alled the PUT ASSERTION ommand. Ifanything goes wrong during the reation and exeution of the method, we throw anAbortExeption.
6.6 A Sample GetAs an example get operation we will look at the getSubjet method with an expliittransation handle. This method takes in the URI of an assertion and returns itssubjet URI.First we validate the transation handle, then we retrieve the onnetion fromthe transation handle. We then all the private helper method getAssertionColwith an argument indiating that we are interested in the SUBJECT olumn. Thismethod �rst validates the onnetion extrated from the transation handle and thenvalidates the assertion URI argument. We reate a prepared statement to run ourdatabase get operation with the URI input. We use a SQL SELECT statementto ask for the subjet of the appropriate row in the RDF Assertions table. Thissubjet may either be a loal URI or a remote URI. If the assertion is found, theappropriate jdbURI or RemoteURI is returned to the lient. If anything goes wrongduring exeution we throw an AbortExeption.94

www.manaraa.com

6.7 How The Server or Client Shuts DownA JDBCStore is shut down by alling its lose method. lose �rst loses the on-netion pool, whih iterates through its onnetions and makes several attempts tolose eah of them individually. If multiple threads are using a onnetion and thatonnetion is losed, there is no way to reopen it. A lient should not all the losemethod unless it wants to ompletely shut down the module for all threads. The nextstep is to lose the middleman server if one exists. Finally, the JDBCStore loses outits namespae. We return any error messages enountered while losing resoures ina TsCloseExeption.The remote TripleStoreClient loses in muh the same way. It loses o� itsmiddleman and ommand terminal. Finally, it loses o� its namespae. We returnerror messages in an HsCloseExeption.

95

www.manaraa.com

96

www.manaraa.com

Chapter 7
Future Investigation
In this hapter, we present several ideas for future improvements to the triple storeinterfae and JDBCStore implementation. We also present ways in whih the HaystakTrust Model an be improved.7.1 Use An Alternative Way to Store SerializableObjetsTwo arbitrary objets with equal internal states an serialize to di�erent bits in theunderlying database of a JDBCStore beause binary large objets are not handled thesame by all databases. Consider the ase where we want to get the URI for an objetwith state bits abdefg. Under the urrent serialization model the JDBCStore oulddeserialize every entry in the Objet Literals table to ompare the deserialized ob-jets to see if they are equal. Instead, we urrently ompare the serialization bits tothe the bits olumn to �nd the URI for an objet literal. The ost of deserializingthe entire Objet Literals table from PostgreSQL oids would be prohibitively ex-pensive. It would be better to allow the database to hek the table for the bit stringabdefg diretly without rereating the objet. We use an MD5 hash to �ngerprintJava String objets for this type of database seletion. A similar tehnique ould beintrodued to �ngerprint other literals so that the Objet Literals table may be97

www.manaraa.com

searhed using MD5 hashes as well.
7.2 Close the Namespae ProperlyIn disussing the way namespaes in the Haystak Trust Model are losed, we overlookone small detail. When a module asks its name utility to lose, and the name utility inturn loses everything registered with it, inluding itself, it does not atually removeitself from the Loadables list of existing namespaes. It would improve modularityif all resoures within a module were freed, inluding the pointer to the name utilityitself in the Loadables list.
7.3 Add A Loal Triple Store Command LineCurrently the JDBCStore ommand line only runs remotely. A simple hange wouldallow the ommand line to run loally as well. An instane of the exat same ommandline lass ould be used for loal and remote versions sine they should funtionidentially, exept that when a loal ommand line asks for its ommand API it getsa real one while a remote ommand line gets a virtual one. This hange may be aseasy as adding an instane of the already existing haystak.ts.CommandLine to theJDBCStore server.
7.4 Add JDBCStore CahesThere are several plaes where the JDBCStore ould be more aware of its memoryusage. The bits of a literal ould be ahed, and for really large bit bins, we ould de-serialize the objet itself and store it in a loal ahe. Instead we urrently deserializeliteral objets every time they are needed.98

www.manaraa.com

7.5 Fix Broken ConnetionsThe JDBCStore implementation urrently does not provide any means of repairinga onnetion if it breaks. This ould pose a problem, espeially if we keep usingonnetions and breaking them until we have none left to use. The ability to repairJDBC onnetions to a database bakend might be a useful improvement.7.6 Prevent Hanging ConnetionsWhen we try to initialize a JDBC onnetion to the bakend database, the onnetionhangs if it annot be reated. If we absolutely need a onnetion to that partiulardatabase in order to do anything useful, the urrent situation may be okay. Butthere should probably be some sort of timeout period so that onnetion attemptsonly hang for a limited time, after whih Haystak tries to �nd some other task toperform, or displays errors to the user on exit.7.7 Find Out What An Exeption on Commit andAbort MeansThe meaning of a JDBC SQLExeption during ommit or abort would be useful toknow. This meaning ould a�et the triple store interfae transation ontrat. Fornow it may suÆe for a lient to abort the transation.7.8 Disover if Information Sent Along the WireVia JDBC Connetions is EnryptedIt is not lear whether or not ommuniation between JDBC and the bakend databaseserver is enrypted. If it is, our system probably has an aeptable seurity protool.If it is not, we should explore the possible options to inlude enryption. The answer99

www.manaraa.com

to this question may depend on the implementation of the database vendor's JDBCdriver.
7.9 Ensure That the JDBCStore Can Run onDi�erent BakendsWhile part of the reason for using JDBC was that it permits onnetions to many dif-ferent database bakends, we have only tested the JDBCStore implementation on thePostgreSQL database. There may be statements exeuted that are database-spei�,and will not work when a JDBCStore onnets to a di�erent database. One anti-ipated problem area is binary large objet storage inonsistenies aross databases.It would behove us to test the JDBCStore on di�erent databases. Reall that thosedatabases would have to be administratively on�gured for onnetivity with theHaystak username and password, as disussed in Setion 2.2.3.
7.10 Find Out Why the PostreSQL DriverDoesn't Appear to Change TransationIsolation LevelsThere is a spei� problem observed with the PostgreSQL JDBC driver that we haveused to test our JDBCStore. Aording to doumentation, PostgreSQL supports theTRANSACTION SERIALIZABLE JDBC isolation level [27℄. However, the numerialvalue for the isolation level of a JDBC onnetion to PostgreSQL does not appear tohange when we all the appropriate methods to reset the onnetion's isolation level.One future improvement to would be to �gure out why this is so. If we disover thatthe PostgreSQL driver does not really support this feature, we may have to hangedatabase bakends. 100

www.manaraa.com

7.11 Improve ModularityIn order to improve modularity, those servies that an be deoupled from the rootserver perhaps should be. We ould then move all non-root server-dependent serviesinto the set of utilities that other modules an use as well. A migration from usingthe name servie to a name utility web of trust might also be bene�ial. Swithing to aname utility ould protet servies from being aessed outside the root server module.Fixing any problem with servies will likely be very time onsuming sine there areso many servies.7.12 Make Haystak Use the Triple StoreThe root server will eventually use triple stores instead of the persistent storage it usesnow. This hange will require de�ning a Haystak RDF ontology to ensure we arewriting valid RDF into our triple stores, and then putting the Haystak Data Modelobjets into triple stores.7.13 Haystaks Sharing InformationOne Haystak has migrated to a triple store, we an begin thinking about things suhas XML serializations of a user's Haystak that another Haystak might understand.One this has been established, we an start work on the soial aspet of sharinginformation repositories between olleagues.

101

www.manaraa.com

102

www.manaraa.com

Chapter 8
Conlusions
We present a dynami and robust bakend solution to the problem of persistene inthe Haystak projet. This bakend, if used soundly, an help ensure that Haystakbeomes a reliable data storage tool.Migrating Haystak to use triple stores will raise many data and appliation mod-elling issues. Steps must be taken towards de�ning a Haystak ontology. That on-tology will allow Haystak to better understand the ontext of its data, simplifyinginterHaystak ollaboration. Haystak an then begin inorporating foreign RDF in-formation repositories into its knowledge base. An expert system will emerge thataters to the user so that a personalized Haystak searh beomes a more naturalextension of human thought.There were several lessons learned while designing and implementing the triplestore. Any software module that does not have learly de�ned requirements is toughto develop. It is also diÆult to reate a bakend module that an be used by aninexible legay system. Creating a bakend that an run inside the legay system oron its own also poses a hallenge. If the bakend uses some relatively new tehnology,suh as RDF, designing a storage module is diÆult sine few systems already existthat use that tehnology. Using inorretly doumented third-party systems an alsobe an arduous task.We hope that the problems solved and lessons learned by this thesis will improvethe Haystak projet. The triple store meets the neessary requirements, but only103

www.manaraa.com

with future Haystak improvements will it beome useful. A Haystak using thetriple store interfae should be more robust than one using the existing persistenelayer. Using the exible and uniform triple store should make Haystak metadatamore easily understandable and therefore more useful.

104

www.manaraa.com

Appendix A
RDF Formal Grammar
This is the formal RDF grammar. Table A is taken from [26℄ from Setion 6. It isinluded here for referene. The reader is enouraged to read the desriptions at thesoure for lari�ation.
[6.1℄ RDF ::= ['<rdf:RDF>'℄ obj* ['</rdf:RDF>'℄[6.2℄ obj ::= desription j ontainer[6.3℄ desription ::= '<rdf:Desription' idAboutAttr? bagIdAttr? propAttr* '/>'j '<rdf:Desription' idAboutAttr? bagIdAttr? propAttr* '>'propertyElt* '</rdf:Desription>'j typedNode[6.4℄ ontainer ::= sequene j bag j alternative[6.5℄ idAboutAttr ::= idAttr j aboutAttr j aboutEahAttr[6.6℄ idAttr ::= ' ID="' IDsymbol '"'[6.7℄ aboutAttr ::= ' about="' URI-referene '"'[6.8℄ aboutEahAttr ::= ' aboutEah="' URI-referene '"'j ' aboutEahPre�x="' string '"'[6.9℄ bagIdAttr ::= ' bagID="' IDsymbol '"'[6.10℄ propAttr ::= typeAttrj propName '="' string '"' (with embedded quotes esaped)105

www.manaraa.com

[6.11℄ typeAttr ::= ' type="' URI-referene '"'[6.12℄ propertyElt ::= '<' propName idAttr? '>' value '</' propName '>'j '<' propName idAttr? parseLiteral '>'literal '</' propName '>'j '<' propName idAttr? parseResoure '>'propertyElt* '</' propName '>'j '<' propName idRefAttr? bagIdAttr? propAttr* '/>'[6.13℄ typedNode ::= '<' typeName idAboutAttr? bagIdAttr? propAttr* '/>'j '<' typeName idAboutAttr? bagIdAttr? propAttr* '>'propertyElt* '</' typeName '>'[6.14℄ propName ::= Qname[6.15℄ typeName ::= Qname[6.16℄ idRefAttr ::= idAttr j resoureAttr[6.17℄ value ::= obj j string[6.18℄ resoureAttr ::= ' resoure="' URI-referene '"'[6.19℄ Qname ::= [NSpre�x ':' ℄ name[6.20℄ URI-referene ::= string, interpreted per [URI℄[6.21℄ IDsymbol ::= (any legal XML name symbol)[6.22℄ name ::= (any legal XML name symbol)[6.23℄ NSpre�x ::= (any legal XML namespae pre�x)[6.24℄ string ::= (any XML text, with "<", ">", and "&" esaped)[6.25℄ sequene ::= '<rdf:Seq' idAttr? '>' member* '</rdf:Seq>'j '<rdf:Seq' idAttr? memberAttr* '/>'[6.26℄ bag ::= '<rdf:Bag' idAttr? '>' member* '</rdf:Bag>'j '<rdf:Bag' idAttr? memberAttr* '/>'[6.27℄ alternative ::= '<rdf:Alt' idAttr? '>' member+ '</rdf:Alt>'j '<rdf:Alt' idAttr? memberAttr? '/>'[6.28℄ member ::= referenedItem j inlineItem[6.29℄ referenedItem ::= '<rdf:li' resoureAttr '/>'[6.30℄ inlineItem ::= '<rdf:li' '>' value </rdf:li>'j '<rdf:li' parseLiteral '>' literal </rdf:li>'106

www.manaraa.com

j '<rdf:li' parseResoure '>' propertyElt* </rdf:li>'[6.31℄ memberAttr ::= ' rdf: n="' string '"' (where n is an integer)[6.32℄ parseLiteral ::= ' parseType="Literal"'[6.33℄ parseResoure ::= ' parseType="Resoure"'[6.34℄ literal ::= (any well-formed XML)Figure A: Formal Grammar for RDF

107

www.manaraa.com

108

www.manaraa.com

Appendix B
RDF Shema
Here is a opy of the XML serialization of the RDF shema [15℄ that may help inunderstanding the RDF type system. The namespae URI for the RDF ShemaSpei�ation will hange in future versions of this spei�ation if the shema hanges.This RDF shema inludes annotations desribing RDF resoures de�ned formallyin the RDF Model and Syntax spei�ation, as well as de�nitions for new resouresbelonging to the RDF Shema namespae.
<rdf:RDFxmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"xmlns:rdfs="http://www.w3.org/2000/01/rdf-shema#"><rdfs:Class rdf:ID="Resoure"><rdfs:label xml:lang="en">Resoure</rdfs:label><rdfs:label xml:lang="fr">Ressoure</rdfs:label><rdfs:omment>The most general lass</rdfs:omment></rdfs:Class>

Figure B-1: An XML Serialization of the RDF Shema 1.0
109

www.manaraa.com

<rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><rdfs:label xml:lang="en">type</rdfs:label><rdfs:label xml:lang="fr">type</rdfs:label><rdfs:omment>Indiates membership of a lass</rdfs:omment><rdfs:range rdf:resoure="#Class"/></rdf:Property><rdf:Property ID="omment"><rdfs:label xml:lang="en">omment</rdfs:label><rdfs:label xml:lang="fr">ommentaire</rdfs:label><rdfs:domain rdf:resoure="#Resoure"/><rdfs:omment>Use this for desriptions</rdfs:omment><rdfs:range rdf:resoure="#Literal"/></rdf:Property><rdf:Property ID="label"><rdf:type resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:label xml:lang="en">label</rdfs:label><rdfs:label xml:lang="fr">label</rdfs:label><rdfs:domain rdf:resoure="#Resoure"/><rdfs:omment>Provides a human-readable version of a resourename.</rdfs:omment><rdfs:range rdf:resoure="#Literal"/></rdf:Property><rdfs:Class rdf:ID="Class"><rdfs:label xml:lang="en">Class</rdfs:label><rdfs:label xml:lang="fr">Classe</rdfs:label><rdfs:omment>The onept of Class</rdfs:omment><rdfs:subClassOf rdf:resoure="#Resoure"/></rdfs:Class><rdf:Property ID="subClassOf"><rdfs:label xml:lang="en">subClassOf</rdfs:label><rdfs:label xml:lang="fr">sousClasseDe</rdfs:label><rdfs:omment>Indiates membership of a lass</rdfs:omment><rdfs:range rdf:resoure="#Class"/><rdfs:domain rdf:resoure="#Class"/></rdf:Property>Figure B-1: An XML Serialization of the RDF Shema 1.0
110

www.manaraa.com

<rdf:Property ID="subPropertyOf"><rdfs:label xml:lang="en">subPropertyOf</rdfs:label><rdfs:label xml:lang="fr">sousPropritDe</rdfs:label><rdfs:omment>Indiates speialization of properties</rdfs:omment><rdfs:range rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:domain rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdf:Property><rdf:Property ID="seeAlso"><rdfs:label xml:lang="en">seeAlso</rdfs:label><rdfs:label xml:lang="fr">voirAussi</rdfs:label><rdfs:omment>Indiates a resoure that provides information about the subjetresoure.</rdfs:omment><rdfs:range rdf:resoure="http://www.w3.org/2000/01/rdf-shema#Resoure"/><rdfs:domain rdf:resoure="http://www.w3.org/2000/01/rdf-shema#Resoure"/></rdf:Property><rdf:Property ID="isDe�nedBy"><rdf:type resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:subPropertyOf rdf:resoure="#seeAlso"/><rdfs:label xml:lang="en">isDe�nedBy</rdfs:label><rdfs:label xml:lang="fr">esD�niPar</rdfs:label><rdfs:omment>Indiates a resoure ontaining and de�ning the subjetresoure.</rdfs:omment><rdfs:range rdf:resoure="http://www.w3.org/2000/01/rdf-shema#Resoure"/><rdfs:domain rdf:resoure="http://www.w3.org/2000/01/rdf-shema#Resoure"/></rdf:Property><rdfs:Class rdf:ID="ConstraintResoure"><rdfs:label xml:lang="en">ConstraintResoure</rdfs:label><rdfs:label xml:lang="fr">RessoureContrainte</rdfs:label><rdf:type resoure="#Class"/><rdfs:subClassOf rdf:resoure="#Resoure"/><rdfs:omment>Resoures used to express RDF Shemaonstraints.</rdfs:omment></rdfs:Class>Figure B-1: An XML Serialization of the RDF Shema 1.0
111

www.manaraa.com

<rdfs:Class rdf:ID="ConstraintProperty"><rdfs:label xml:lang="en">ConstraintProperty</rdfs:label><rdfs:label xml:lang="fr">PropritContrainte</rdfs:label><rdfs:subClassOf rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:subClassOf rdf:resoure="#ConstraintResoure"/><rdfs:omment>Properties used to express RDF Shemaonstraints.</rdfs:omment></rdfs:Class><rdfs:ConstraintProperty rdf:ID="domain"><rdfs:label xml:lang="en">domain</rdfs:label><rdfs:label xml:lang="fr">domaine</rdfs:label><rdfs:omment>This is how we assoiate a lass withproperties that its instanes an have</rdfs:omment></rdfs:ConstraintProperty><rdfs:ConstraintProperty rdf:ID="range"><rdfs:label xml:lang="en">range</rdfs:label><rdfs:label xml:lang="fr">tendue</rdfs:label><rdfs:omment>Properties that an be used in ashema to provide onstraints</rdfs:omment><rdfs:range rdf:resoure="#Class"/><rdfs:domain rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdfs:ConstraintProperty><rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"><rdfs:label xml:lang="en">Property</rdfs:label><rdfs:label xml:lang="fr">Proprit</rdfs:label><rdfs:omment>The onept of a property.</rdfs:omment><rdfs:subClassOf rdf:resoure="#Resoure"/></rdfs:Class><rdfs:Class rdf:ID="Literal"><rdfs:label xml:lang="en">Literal</rdfs:label><rdfs:label xml:lang="fr">Littral</rdfs:label><rdf:type resoure="#Class"/><rdfs:omment>This represents the set of atomi values, eg. textualstrings.</rdfs:omment></rdfs:Class>Figure B-1: An XML Serialization of the RDF Shema 1.0112

www.manaraa.com

<rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"><rdfs:label xml:lang="en">Statement</rdfs:label><rdfs:label xml:lang="fr">Dlaration</rdfs:label><rdfs:subClassOf rdf:resoure="#Resoure"/><rdfs:omment>This represents the set of rei�ed statements.</rdfs:omment></rdfs:Class><rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#subjet"><rdfs:label xml:lang="en">subjet</rdfs:label><rdfs:label xml:lang="fr">sujet</rdfs:label><rdfs:domain rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/><rdfs:range rdf:resoure="#Resoure"/></rdf:Property><rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#prediate"><rdfs:label xml:lang="en">prediate</rdfs:label><rdfs:label xml:lang="fr">prdiat</rdfs:label><rdf:type resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/><rdfs:domain rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/><rdfs:range rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdf:Property><rdf:Property about="http://www.w3.org/1999/02/22-rdf-syntax-ns#objet"><rdfs:label xml:lang="en">objet</rdfs:label><rdfs:label xml:lang="fr">objet</rdfs:label><rdfs:domain rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/></rdf:Property><rdfs:Class rdf:ID="Container"><rdfs:label xml:lang="en">Container</rdfs:label><rdfs:label xml:lang="fr">Enveloppe</rdfs:label><rdfs:subClassOf rdf:resoure="#Resoure"/><rdfs:omment>This represents the set Containers.</rdfs:omment></rdfs:Class>Figure B-1: An XML Serialization of the RDF Shema 1.0
113

www.manaraa.com

<rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"><rdfs:label xml:lang="en">Bag</rdfs:label><rdfs:label xml:lang="fr">Ensemble</rdfs:label><rdfs:subClassOf rdf:resoure="#Container"/></rdfs:Class><rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"><rdfs:label xml:lang="en">Sequene</rdfs:label><rdfs:label xml:lang="fr">Squene</rdfs:label><rdfs:subClassOf rdf:resoure="#Container"/></rdfs:Class><rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt"><rdfs:label xml:lang="en">Alt</rdfs:label><rdfs:label xml:lang="fr">Choix</rdfs:label><rdfs:subClassOf rdf:resoure="#Container"/></rdfs:Class><rdfs:Class rdf:ID="ContainerMembershipProperty"><rdfs:label xml:lang="en">ContainerMembershipProperty</rdfs:label><rdfs:subClassOf rdf:resoure="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/></rdfs:Class><rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#value"><rdfs:label xml:lang="en">objet</rdfs:label><rdfs:label xml:lang="fr">value</rdfs:label></rdf:Property></rdf:RDF>Figure B-1: An XML Serialization of the RDF Shema 1.0
114

www.manaraa.com

Appendix C
Glossary of Haystak Terminology

� AbortExeption: Part of the triple store pakage, an AbortExeption indi-ates some problem exeuting a method on the underlying database as part ofa transation. The usual ourse of ation will be for the triple store to abortthe transation.� arhive ommand: The ommand that stores new information into a user'sHaystak. Arhiving is the proesses of reording new douments or otherresoures for later retrieval.� bakup servie: A servie that takes a periodi snapshot of a user's Haystak.The intent is that a user an revert to an old snapshot if his or her Haystakbeomes orrupted.� bale: A bale is a speial type of straw that represents a olletion of straws.We an add metadata to the entire olletion by attahing straws to a bale.� ommand API: The interfae for registering and invoking ommands for amodule. The ommand API arhiteture is used in both the root server andthe triple store modules.� ommand line: A text-based user interfae that parses inputs from a terminaland outputs results therein. Command lines exist for both the root server andtriple store modules. 115

www.manaraa.com

� on�g servie: The servie that manages on�gurations for use in the rootserver.� on�g utility: The utility that manages global on�gurations that are intendedto serve as defaults for instantiation of new modules. The on�g utility isurrently idential to the on�g servie exept that it an run outside the rootserver. A global on�g utility is urrently essential before reating and runninga triple store.� ore servies: Those servies in the root server that other servies may dependon. The assumption is that every servie an use any of the ore servies.� Haystak Data Model (HDM): The fundamental data objets used by theHaystak IR tool.� Haystak Servie Model (HSM): The model of dynamially loadable ser-vies running around within Haystak to perform di�erent tasks.� Haystak Trust Model (HTM): An enhanement to the Haystak ServieModel that introdues the onept of utilities. Fous within the HTM is onmaintaining modularity and reusability of ode.� HaystakID: An identi�er that refers to any straw in the Haystak Data Model.� HsServie: The Java lass at the root of the servie hierarhy. An HsServieis a servie that an be referred to via a semanti servie name desription.� JDBCStore: The Java implementation of the triple store module. A JDBC-Store onnets to a database via the Java DataBase Connetivity API.� kernel: A module whih limits aess to ritial data within the HaystakIR tool. Examples of ritial data are Haystak Data Model elements andtransation handles for modi�ation of disk data. Transations are urrentlyturned o� in the kernel. A modi�ation of the kernel may be used in the future116

www.manaraa.com

to restrit aess to the triple store and its transation handles. The root serverurrently protets important data and pointers using this module.� Middleman: The lient for one form of remote ommuniation in Haystak.It uses seurity objets to authentiate and enrypt a dialogue with a Middle-manServer. A Middleman an be either a servie if reated by the root serveror a utility if reated by the triple store.� MiddlemanServer: The server for one form of remote ommuniation inHaystak. It uses seurity objets to authentiate and enrypt dialogues withany Middlemen that onnet to it. A MiddlemanServer an be either a servieif reated by the root server or a utility if reated by the triple store.� name servie: The servie that other servies use to initialize interservieommuniation. The name servie an be used to dynamially register andload servies. It allows servies to talk to eah other via semanti servie namedesriptions. The name servie also stores information about the servies loadedinto it persistently on disk. The name servie is the root server's namespae. Itmay be aessed from anywhere in the Haystak proess.� name utility: The utility that other utilities use to initialize interutility om-muniation. The name utility an be used to dynamially register and loadutilities. A name utility is a web of trust that privileged utilities an use to talkto eah other via semanti utility name desriptions. The name utility is anarbitrary module's namespae. The global name utility may be aessed fromanywhere in the Haystak proess, but a module-spei� name utility an onlybe aessed by privileged utilities.� NamedUtility: The Java lass at the root of the utility hierarhy. A namedutility is a utility that an be referred to via a semanti utility name desription.� needle: A needle is a speial type of straw that ontains unproessed data orolletions of bits. The text of a doument ould onstitute one kind of needle.117

www.manaraa.com

� persistent hashtable: The existing persistent interfae to disk that the rootserver uses to store its data model. A persistent hashtable stores (key, value)pairs.� query servie: A servie that proesses queries and attempts to generatesuitable result sets.� real: Belonging to the server side. Typially real servies or utilities performthe atual work that virtual ounterparts request.� root server: The Information Retrieval module of the Haystak projet. Even-tually we antiipate that the root server will use the triple store as a persistentinterfae to store its data model.� servie: An entity that runs in the root server to aid in some InformationRetrieval purpose. Servies an run only in the root server. Their instanes arerestrited by uniqueness within a Haystak proess.� servie name: The semanti desription of a servie. Currently omprisedonly of harater strings, we antiiapte other desriptions in the future.� straw: A straw is the root of the Haystak Data Model hierarhy. All datamodel objets are straws. A straw has a unique HaystakID that refers to it.� tie: A tie is a speial type of straw that forms a labelled, direted edge fromone straw to another. Ties are the basi relational entities in the Haystak DataModel and together with the objets they onnet onstitute an assertion.� TransationExeption: An exeption whih indiates an attempt to use aninvalid handle or the absene of a transation for the spei�ed thread and in-stane of a triple store.� TransationHandle: The Java interfae that refers to a transation handle toa triple store. A transation handle may be used to make a series of ations onthe triple store appear as though they were one atomi ation.118

www.manaraa.com

� triple store: A module whih stores information on disk in the form of or-dered triples while o�ering a transation ontrat that an provide persisteneif properly used. Eah triple is alled an assertion.� TripleStore: The Java interfae to the triple store module.� TripleStoreClient: The Java implementation of the remote triple store lient.Currently the remote lient an just onnet and run simple ommands on theserver side.� URI: The Java interfae that refers to a resoure in the triple store. Weuse URIs to refer to resoures in the triple store in muh the same way thatHaystakIDs are used in the Haystak Data Model.� utility: An entity whih an have many instanes running in di�erent modulesonurrently. Compare to the notion of a servie.� utility name: A semanti desription of a utility. Currently omprised onlyof harater strings, we antiipate other desriptions in the future. Similar to aservie name exept reated for use in a name utility.� virtual: Belonging to the lient side. Typially virtual servies or utilities willhave a real ounterpart to whom the atual work is relayed.

119

www.manaraa.com

120

www.manaraa.com

Bibliography
[1℄ Harold Abelson and Gerald Jay Sussman with Julie Sussman. Struture andInterpretation of Computer Programs, setion 3.2, pages 236{251. The MITPress with The MGraw-Hill Companies, In., Cambridge, MA, seond edition,1996.[2℄ Eytan Adar. Hybrid-searh and storage of semi-strutured information. Master'sthesis, Massahusetts Institute of Tehnology, Department of Eletrial Engineer-ing and Computer Siene, May 1998.[3℄ Mark Asdoorian. Data manipulation servies in the haystak ir system. Master'sthesis, Massahusetts Institute of Tehnology, Department of Eletrial Engineer-ing and Computer Siene, May 1998.[4℄ Krishna Bharat. Searhpad: Expliit apture of searh ontext to support websearh. http://www9.org/w9drom/173/173.html.[5℄ Bert Boss. Xml in 10 points. Tehnial report, W3C,http://www.w3.org/XML/1999/XML-in-10-points, Marh 1999.[6℄ J. Budzik and K. J. Hammond. User interations with everyday appliations asontext for just-in-time information aess. Proeedings of the 2000 InternationalConferene on Intelligent User Interfaes, 2000.[7℄ Orale Corporation. Orale8 server sql referene, release 8.0.http://www.orado.om/ora8do/DOC/server803/A54647 01/to.htm.121

www.manaraa.com

[8℄ Domini D'Aleo. A versioning layer for haystak. Master's thesis proposal,Massahusetts Institute of Tehnology, Department of Eletrial Engineering andComputer Siene, February 2001.[9℄ David Flanagan. Java in a Nutshell. The Java Series. O'Reilly & Assoiates,In., Sebastopol, CA, third edition, November 1999.[10℄ Jim Gray and Andreas Reuter. Transation Proessing: Conepts and Teh-niques. The Morgan Kaufmann Series in Data Management. Morgan KaufmanPublishers, In., San Franiso, CA, 1993.[11℄ Philip Greenspun. Sql for web nerds. http://photo.net/sql/.[12℄ Philip Greenspun. Philip and Alex's Guide to Web Publishing, hapter 12, pages325{364. Morgan Kaufmann Publishers, In., San Franiso, CA, 1999.[13℄ The PostgreSQL Global Development Group. Postgresql. An open-soure projetwith links to mirrors found at http://www.postgresql.org/ and a U.S. WWWmirror at http://postgresql.readysetnet.om/.[14℄ W3C Consortioum XML Working Group, Speial Interest Group, andW3C Metadata Ativity. Namespaes in xml. Tehnial report, W3C,http://www.w3.org/TR/1999/REC-xml-names-19990114, January 1999.[15℄ W3C RDF Shema Working Group. Resoure desription frame-work (rdf) shema spei�ation 1.0. Tehnial report, W3C,http://www.w3.org/TR/2000/CR-rdf-shema-20000327, Marh 2000.[16℄ W3C XML Core Working Group. Extensible markup language (xml) 1.0 (se-ond edition). Tehnial report, W3C, http://www.w3.org/TR/2000/REC-xml-20001006, Otober 2000.[17℄ Marti A. Hearst. Next generation web searh: Setting our sites. Bulletin ofthe IEEE Computer Soiety Tehnial Committee on Data Engineering, 2000.http://www.researh.mirosoft.om/researh/db/debull/A00sept/hearst.ps.122

www.manaraa.com

[18℄ INT Media Group Inorporated. Ftp - webopedia de�nition and links.http://www.pwebopedia.om/TERM/F/FTP.html.[19℄ Daniel D. Lee and Sebastian Seung. Learning the parts of objets by non-negativematrix fatorization. Nature, 401:788{791, Otober 1999.[20℄ Christopher Loke. Aelerating toward a better searh engine. Red Herring,Marh 2001. http://www.herring.om/index.asp?layout=story&hannel=10000001&do id=1450018145.[21℄ Aidan Low. A folder-based implementation of a graphial interfae to an infor-mation retrieval system. Master's thesis, Massahusetts Institute of Tehnology,Department of Eletrial Engineering and Computer Siene, May 1999.[22℄ et al. Lynn Andrea Stein. Annotated daml ontology markup. Tehnial report,DAML, http://www.daml.org/2000/10/daml-walkthru, Otober 2000.[23℄ Kenneth D. MCraken. Dynami and robust data storage and retrieval in thehaystak system. Master's thesis proposal, Massahusetts Institute of Tehnolo-gy, Department of Eletrial Engineering and Computer Siene, May 2000.[24℄ M. J. MGill and G. Salton. Introdution to Modern Information Retrieval.MGraw-Hill, New York, NY, 1983.[25℄ Sun Mirosystems. Jdb data aess api.http://java.sun.om/produts/jdb/index.html.[26℄ W3C RDF Model and Syntax Working Group. Resoure desriptionframework (rdf) model and syntax spei�ation. Tehnial report, W3C,http://www.w3.org/TR/1999/REC-rdf-syntax-19990222, February 1999.[27℄ Peter T Mount. Postgresql jdb driver. An open-soure projet athttp://jdb.postgresql.org/. 123

www.manaraa.com

[28℄ MIT Department of Eletrial Engineering and Computer Siene. 6.033 draftof hapter eight: Atomiity, April 1999. M. Frans Kaashoek taught the ourseduring the term these notes were distributed.[29℄ George Reese. Database Programming with JDBC(TM) and Java(TM). TheJava(TM) Series. O-Reilly and Assoiates, In., Sebastopol, CA, seond edition,August 2000. JDBC and Java are trademarks of Sun Mirosystems, In.[30℄ Mihael Stonebraker. Objet-relational dbms - the next wave.http://db.s.berkeley.edu/papers/Informix/www.informix.om/informix/orpinfo/zines/whitpprs/illuswp/wave.htm.[31℄ Danny Sullivan. Being searh boxed to death. The Searh Engine Report, Marh2001. http://searhenginewath.om/sereport/01/03-boxed.html.[32℄ In. Sun Mirosystems. Java 2 platform, standard edition.http://java.sun.om/produts/jdk/1.2/dos/api/java/sql/pakage-summary.html.[33℄ In. Sun Mirosystems. The java tutorial.http://java.sun.om/dos/books/tutorial/.[34℄ Jaime B. Teevan. Improving information retrieval with textual analysis: Bayesianmodels and beyond. Master's thesis, Massahusetts Institute of Tehnology,Department of Eletrial Engineering and Computer Siene, May 2001.[35℄ Dallan Quass William Cohen, Andrew MCallum. Learn-ing to understand the web. Bulletin of the IEEE Comput-er Soiety Tehnial Committee on Data Engineering, 2000.http://www.researh.mirosoft.om/resarh/db/debull/A00sept/ohen.ps.
124

